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A theoretical investigation of the dynamic sensitivity of a two-frequency laser detec-
tor is presented in which the laser is also used as the source of sounding radiation. It is 
shown that, under conditions determined in the paper, the dynamic sensitivity of the 
two-frequency laser detector can substantially exceed the sensitivity of the single-
frequency one. Based on the theoretical analysis and the experimental results of Ref. 9, a 
highly sensitive lidar scheme with a two-frequency laser detector is proposed. In this 
scheme the sensing is performed with the strong beam, while the signal is detected with 
the weak beam, generated at a transition coupled with the sounding beam. It is found 
that in this sounding regime nonlinear stabilization of the sounding beam intensity takes 
place. It is also noted that in addition to the highly sensitive regime there also exists a 
regime of two-frequency laser emission in which the laser detector sensitivity can de-
crease even below that of single-frequency laser detection. 

 
 

INTRODUCTION 
 

One of the principal directions that have been 
pursued in order to increase the functional capabili-
ties of lidar systems used for the investigation of 
atmospheric parameters is the application of new 
high-sensitivity detection schemes. One such scheme 
is based on laser detection (LD) of the optical signal 
being analyzed. The foundations of laser detection 
were discussed in Refs. 1 and 2. Much attention has 
been paid to its study and utilization in a lidar sys-
tem called laser detection lidar (LD-lidar).3–7 In 
LD-lidars. a variant of detection is realized in which 
the same laser is used both as the sounding emission 
source and the element of the detection device that 
amplifies the return signal nonlinearly. It has been 
noted that an advantage of LD-lidar is its high sen-
sitivity and that it is noiseproof.3 In Ref. 8 it was 
noted that in the near-threshold region of laser gen-
eration laser detection is characterized by an anoma-
lously high sensitivity. However, it is obvious that it 
is not promising to try to make use of this result in a 
real lidar system designed for a considerable sound-
ing distance, since. In the near-threshold regime, 
only radiation of weak intensity is generated. The 
authors of Ref. 9 proposed a way to solve this di-
lemma — detection on a two-frequency laser. 

In the present paper we provide a theoretical 
foundation for the high dynamic sensitivity of the de-
tection scheme which employs a two-frequency laser 
generating on linked transitions. Two variants have 
been studied: A — the sounding and recording are 
performed on a single wavelength. Â — the sounding 
is conducted on one wavelength, while the recording is 

realized on laser radiation generated on an adjacent 
transition. The conditions are determined under which 
it is possible to achieve a substantially higher sensitiv-
ity using the two-frequency laser than with the single-
frequency laser. In variant A, an increase in the sensi-
tivity of two-frequency LD is accompanied by a de-
crease of the intensity of the sounding beam. However, 
in variant B, a highly sensitive two-frequency LD (as 
compared to the single-frequency one) is realized when 
the sounding is carried out using the strong beam 
while the recording is realized on the weak beam gen-
erated on a transition coupled with the sounding 
beam. Data which we have obtained on the nonlinear 
stabilization of a strong sounding beam in the course 
of generation of a weak beam on a linked transition 
are an essential factor in the improvement of the prin-
cipal characteristics of the lidar system under consid-
eration. The gain in the dynamic sensitivity of two-
frequency LD in the generation regime on the linked 
transitions can reach several orders of magnitude. It 
was noted that in addition to the highly sensitive re-
gime there also exists such a two-frequency laser gen-
eration regime in which there arises a great sensitivity 
decrease in comparison with the single-frequency LD. 
The results of an experimental study of the detection 
sensitivity of a He-Ne laser generating on the two 
linked transitions  3S2— 2P4 (0.63 m) and 3S2—3P4  
(3.39 m) are presented in Ref. 12. 
 

DYNAMIC DESCRIPTION OF LD  
ON A TWO-FREQUENCY LASER 

 
The essence of laser detection is that the weak 

signal which is to be analyzed is introduced into the 
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laser resonator, where its mixing with the field 
within the resonator and nonlinear amplification of 
the resulting signal occur. Under certain conditions 
this makes it possible to lift the signal substantially 
above the noise in the photodetector path in the 
course of the photorecording. The principal factor 
limiting the photorecording sensitivity remains the 
laser noise and the acquired amplitude and phase 
fluctuations of the return signal acquired during the 
propagation of the signal through the atmosphere.  
The problem of nonlinear transformation of the  re-
turn signal fluctuations within the laser resonator 
and their subsequent influence on the photorecording 
sensitivity requires a statistical description of detec-
tion on a two-frequency laser and will be considered 
separately. In order to obtain a system of equations 
describing the dynamics of detection on a two-
frequency laser, we shall follow the standard scheme 
that was used for the description of LD-lidar dynam-
ics, e.g., in Ref. 6. We expand the polarization of 
the active laser medium in Maxwell’s equation for a 
quasiplanar beam into a series in the resulting field 
amplitude E = E1 + E2 + Er, where E1, E2 are the 
field strengths of the fields generated by the laser 
and is the amplitude of the return signal reflected 
from the companion mirror and introduced into the 
laser resonator. The dependence of the polarization P 
on the field inside the resonator E in the description 
of laser dynamics based on the Lamb model is well 
known.10 Let us expand P in a series in E and keep 
only the cubic terms and lower. Let us make use of 
the boundary conditions on the resonator mirror of 
the laser R1, assuming that the phase of the sound-
ing beam varies only slightly during the time 
t = 2 L/c, i.e., r(0, t–2L/c) – r(0, t)  0. This 
makes it possible to proceed to a system of ordinary 
differential equations for the slow amplitudes and on 
the basis of that for the intensities. 
 

 
 

 (1) 
 

2

1,2 1,2I E  are the intensities of the beams generated 

in the laser resonator R0 (R1), carrying information 
on the conditions of the propagation of the sounding 
signal in the outer resonator R1 (R2). In obtaining 
Eq. (1) it was assumed that generation on both tran-
sitions was singlefrequency, but that tuning of the 
frequency was central. The coefficients 12 and 21 in 
Eq. (1) characterize the coupling of the modes being 
generated through the population of the total level; 
11 and 22 are the saturation coefficients of the ac-
tive laser medium; A1,2 determines the pumping ex-
cess k1,2 (of linear amplification) over the cumulative 
linear losses ê1,2 
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losses in the laser resonator; l is the optical length of 
the laser resonator; 1 1(1 );R R     R0 and R1 are the 
reflection coefficients of the laser resonator mirrors; 
 characterizes the presence of feedback due to the 
passage of the sounding signal up to the companion 
mirror (or a natural target) with reflection coeffi-

cient R2. For coherent detection (r > r0, 
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and  are the radii of spatial and temporal coherence 
of the signal being detected in the detection aperture 
plane; L is the optical path length between the mir-
ror R1 and the target R2; ñ is the speed of light; r0 is 
the radius of the detection aperture) and for incoher-
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where  = 1() + 2 is the sum of the coefficients 
of selective (1()) and nonselective (2) losses in 
the atmosphere, and Âc characterizes the extent of 
spatial and temporal coherence. If modulation of the 
return signal exists,  = cc(nc),(t). We will be inter-
ested in modulation with period much greater than 
the characteristic setting-up time of laser generation. 

Let us introduce the new variables 11
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 Taking this into ac-

count, system of equations (1) takes a form conven-
ient for further analysis: 
 

 
 

 (5) 
 

Depending on the generalized coupling coefficients 
12 and 21 of the x and ó beams, i.e., I1 and I2 in 
the scheme of LD under consideration, three station-
ary and one nonstationary regimes of laser genera-
tion are possible; 1) 2j > 1. 12 < 1. Under these 
conditions of LD, only the single-frequency laser 
generation regime with the stationary values is sta-

ble: 0 1
1

11

A
I 


 (x = 1), 0

2 0I  (y = 0); 2) 12 > 1, 

21 < 1. This situation results in a simple inversion 
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of the stable single-frequency regime: 0
1 0I   

(x = 0), 0 2
2

22

A
I 


 (y = 1); 3) 12 > 1, 21 > 1. Un-

der these conditions two-frequency generation is un-
stable. This is a regime of competing transitions. 
Depending on the correlations between 12 and 21 as 
well as the initial conditions, stationary generation 
"survives" only on one of the transitions. 4) The 
conditions of LD when 12 < 1, 21 < 1 are of some 
practical interest for us. Then there is a stable gen-
eration regime on the linked transitions with the 
stationary intensity values x0 and y0 
 

 (6) 
 

 (7) 
 

Based on Eqs. (6) and (7) let us find expressions for 
the dynamic sensitivity of two-frequency LD, i. e., 

1,2 1.2
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1,2

,
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  where I = I(A + A) – I(A). 

 

 (8) 
 

 (9) 
 

In the case of weak coupling between I1 and I2, 
when 12  0 and 21  0, Eqs. (8) and (9) go over 
to expressions for the dynamic sensitivity of two-
frequency LD with independent generation of I1 and 
I2, which is equivalent to the dynamic sensitivity of 
the single-frequency LD variant m1 
 

 (10) 
 

For strong coupling, when, for example, 12  1, 
21 ` 1 (i.e., the condition 1221 ` 1 is preserved) 
I1 and I2 are related to each other by Eqs. (6) and 
(7): I1 is the weak beam, while I2 (with respect to 
I1) is the strong beam. In this situation, the reso-
nance denominator (1 – 12)

–1 begins to play a deci-
sive role in expression (8). This causes a substantial 
(by several orders of magnitude) increase in the dy-
namic sensitivity of two-frequency LD, as compared 
with single-frequency LD. As to recording on the 
second beam, according to Eq. (9) 
 

 
 

since 21  0. This result is symmetric with respect 
to inversion of the conditions: 12  0, 21  1. 
Thus, detection on a laser with linked transitions, 

when sounding and recording are conducted on the 
same frequency, has a noticeable advantage as far as 
dynamic sensitivity is concerned (in comparison with 
single-frequency LD) only when sounding with a 
beam of weak intensity. Therefore, for sounding at a 
considerable distance, the scheme of crossed LD is 
more promising: the sounding is conducted at one 
wavelength, the recording is carried out on the tran-
sition linked to it. On the basis of, for example, 
Eq. (7), we obtain 
 

 (11) 
 

In the limit 21  0 (the case of weak coupling be-
tween I1 and I2), as follows from Eq. (11), 
 

 
 

We note further that for 21 < 0.5, i.e., when I2 > I1, 

the coefficient multiplying 1

1

A
A


 is less than unity. 

Using the strong beam to record variations in the con-
ditions of laser generation at the frequency of the 
weak beam, along with the weak action of I1 on I2 
(21  0), results in a decrease in the sensitivity of 
two-frequency LD in comparison with single-frequency 
LD. This theoretical inference agrees with the experi-
mental data given in Ref. 11, where a substantial de-
crease (by a factor of 102–103) of the dependence of 
the intensity fluctuations of a He-Ne laser at the 
wavelength 0.63 m, produced by fluctuations of the 
discharge current during simultaneous generation at 
the wavelength 3.39 m, was recorded. The authors of 
Ref. 11, however, did not assign any importance to the 
existence of a generation regime of the He-Ne laser on 
linked transitions, where a substantial increase in the 
sensitivity occurs. 

Let us consider the inverse situation: 21 > 0.5 
(2112 ` 1), when, according to Eqs. (6) and (7), 
I1 > I2. As follows from formula (11), in the limit 
21  1, the resonance denominator (1 – 21)

–1 plays 
a decisive role that results in a substantial (by sev-
eral orders of magnitude) increase in the dynamic 
sensitivity of two-frequency LD, as compared with 
single-frequency LD. Hence we conclude that the 
most advantageous (as regards sensitivity) variant of 
two-frequency LD is the following: sounding is car-
ried out on the strong beam, while recording is car-
ried out on the transition linked to the sounding 
beam. The experimental results on two-frequency 
detection using a CO2 laser generating on linked 
transitions, given in Ref. 9, lead to the same conclu-
sion. Naturally, an increase (decrease) of dynamic 
sensitivity cannot be infinitely great, as follows for-
mally from expressions (8), (9), and (11), since it is 
noise-limited. Thus, in the scheme of crossed two-
frequency LD, for example, the weak beam is, first, 
noisier; second, to a greater extent than the strong 
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beam, it tracks random modulations, which the 
sounding beam acquires during its propagation 
through the atmosphere. The principal limiting fac-
tor is unstable behavior of the considered nonlinear 
system (1) near the boundary of the nonequilibrium 
transition from one stablestate to another. The con-
ditions 1) 1221 = 1; 2) 12 = 1, 21 =1, or 12 = 1, 
21  1; and 3) 21 = 1, 12  1 lead the system that 
describes the dynamics of two-frequency LD to a 
metastable state. The height of the potential barrier 
separating the three stable states from the unstable 
one, as well åé the average transition time between 
them, depends not only on the dynamic and statistic 
characteristics of the laser beams generated but also 
on the conditions of propagation of the sounding 
beam through the atmosphere. Calculation of those 
characteristics is the object of separate investigation. 
Thus, the problem of quantitative bounds on the 
limiting increase (decrease) of the sensitivity of two-
frequency LD must be solved taking into account 
this remark within the framework of a statistic de-
scription of two-frequency LD and the photore-
cording scheme. 

On the basis of the theoretical results that have 
been obtained here, we draw the following conclu-
sions; 1. Lidar with two-frequency LD is the most 
effective when sounding is conducted by a strong 
beam, while recording is carried out on a weaker one 
linked with it on an adjacent transition in the gen-
eration process. 2. For generation on linked transi-
tions, an effective nonlinear stabilization of the in-
tensity of the strong beam is possible. 

The author thanks E.P. Gordov, V.N. Gorbachev, 
and A.Z. Fazliev for fruitful discussion of the paper. 
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