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Record and reconstruction a two-exposure Gabor hologram of an amplitude screen for wavefront
control are described in the third-order approximation. It is shown that control errors are caused by

spherical aberration of the hologram.

In Ref. 1 it was shown that the two-exposure record of
a Gabor hologram of an amplitude screen leads, at the stage
of its reconstruction, to formation of a shear interferogram
in infinitely wide bands that characterizes the wave front
of the coherent radiation used for screen illumination.
The mechanism of formation of the interference pattern in
this case reduces to the need to match objective speckles
of the two exposures in the plane of a photographic plate
at the stage of hologram recording. The speckles are
matched by changing the tilt angle of the controlled wave
front and the lateral shift of the photographic plate
before the second exposure. The objective speckles of
both exposures can be matched both for a divergent and
a convergent quasispherical wave fronts.

The interference pattern located in the hologram
plane is recorded at the stage of its reconstruction when
performing spatial filtering of the diffraction field on
the optical axis in the plane of formation of the real image
of an amplitude screen. In Ref. 1, to justify the conditions
of formation of the interference pattern in coherent
diffusely scattered fields, the parabolic approximation
was used for the complex field amplitude. This
approximation ignores possible control errors caused by
monochromatic aberrations of the hologram.

This paper analyzes formation of the shear
interferogram characterizing the controlled wave front
in the third-order approximation in order to estimate
possible control errors due to monochromatic aberrations
of the hologram.

According to Fig. 1a, the amplitude screen 1 lying in
the plane (x4, y4) is illuminated by the coherent radiation
with the divergent quasispherical wave having the
radius of curvature R. The radiation scattered by the
screen along with the coherent background is recorded
on a photographic plate 2 located in the plane (x5, y5)
at the distance [ for the time of the first exposure. Before
the second exposure, as in Ref. 1, the tilt angle of the
controlled wave front is changed, for example, in the
plane (x, z) by the value o and the photographic plate
is displaced by the distance b in the same direction along
the axis x. Then, neglecting constant factors, in the third-
order approximation the distribution of the complex
field amplitude in the plane (x5, y5) corresponding to the
first exposure can be written in the form:
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ui(xy, yo) ~ ff [1 - t(xy, y] x

X eXp {z {k [ﬁ G+ —%(x% +y%)2]— olxq, yO}} X
X exp {g [Cxy = x9)" + (yy — y2) ]}x

X exp {— é_; [(xq - x2)2 + (yy — yz)z]z} dxq dyq, (1)

where k is the wave number; t(xy, y1) is the screen
absorption amplitude, which is a random function of
coordinates; @(xy, y1) is a deterministic function
characterizing wave distortion of the radiation used to
illuminate the amplitude screen, for example, because of
the aberrations of the optical system that forms it.
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Fig. 1. Schematic of recording (a) and reconstruction (b) of
a two-exposure Gabor hologram: amplitude screen 7,
photographic  plate-hologram 2, plane of interferogram
recording 3; positive lens L, and spatial filter p.
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Equation (1) can be presented in the following form:

u1(x2, yg) ~
~ exp ik i(962+ 2)—L(Jc2+ 2| ¢ x
! 9] X2 Y2 813 2 Y2
thny 5
x 1[8(xy, y2) — Flxy, y2)] ® exp | — R (3 +yr) |®
® D(xy, yo) ® P1(xg, yo) @ Dy(xy, y2) ® D3(xy, y2)}, (2)

where ® denotes convolution; 8(xy, y5) is the Dirac
delta function; py = R/ (R + [) is the scaling factor;

F(xy, y2), ©(x2, y2), @1(xg, y2), o, y2), P3(x, y2)

are the Fourier transforms of the functions

. ik
tCxy, yo), exp [=ioCxy, y1)], exp [— SRET + y%)ﬂ,

ik .
exp [— @(x% + y%)ﬂ, exp [iy((xy, y1; X2, ¥2)]

with the spatial frequencies x5,/Al and y5/Al; A is the
wavelength of coherent radiation used for hologram
recording and reconstruction;

yi(xy, y1; X2, y2) =
k(.2 2 2 9 3 2 2 9
—p\6x1 12 6yt Y — Axtag — Aaf Yy Yo + 201 Yy -
3 2 2,52 2
—4xyxp —Ax Y1 Y2 T8 Y1 xp Y2 —AX X0y T 2y x)
P 3 3
— 4y 22y — 4yt yo — 4yy yz)

is the phase function characterizing third-order off-axis
wave aberrations.

Using the condition t(xq, y1) <<1 (Ref. 2), let us
find the complex transmission amplitude t1(xy, yo) of the
hologram under condition that recording is within the linear
portion of the blackening curve of the photosensitive
material. Neglecting the regular component occupying a
small spatial area in the recording plane of the interference
pattern at the stage of hologram reconstruction,?! it is
described by the equation

ikpy
t4(x9, y2) ~ {GXP |:7 (a5 + y%)} ®

@D (xy, y2) ® D (xy, y2) ® D3 (xy, y) } X

thny 5y
x VF(x, y3) @ exp | — 2] (3 + y32) | ® D(xy, y) @
® @1(][2, yz) ®®2(]€2, y2) ®‘D3(]C2, yg)} + C.C., (3)

where c.c. means complex conjugate.

The first term r§71)(x2,y2) in Eq. (3) determines
the following diffraction of the wave in the (=1) order
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at the stage of hologram reconstruction, while the second
term tgﬂ)(xz, y) stands for the (+1) order.

The distribution of the complex field amplitude in
the photographic plate plane (x5, y5) corresponding to
the second exposure can be written in the form

uy(xy, y2) ~ ff [1— t(xy, y] x

X exp {1 {% [(xy + Rsina)? + y%] - o(xq + q, y1)}} x
ik L2 20
X exp {— 3RS [(x1 + Rsina)” + y7] } x
ik 9 9
X exp {g [Cer =22 = D)+ (yy — y2) ]} x

ik
X exp {— # [(xf = 2y — b)? + (y1 - y2)2]2} dxy dyy, (4)

where a is the shift of the wave front due to the change
in its tilt angle before the second exposure.

If b=Isina, then the complex transmission amplitude
15(x9, y2) = t§_1)(x2, yo) + rgﬂ)(xz, y) of the hologram
corresponding to the second exposure can be represented as

ik
19(ay, yo) ~ {exp [2—?1 (a3 + y%)} ®

® exp(—ikaxy /1) ®*(xy, y9) ® exp(—ikRbxy/ I2) x

x @ (19, y2) ® exp(ikbay /1) ®5(x9, ) }X

ikpy 2 2 .
x| F(xy, y2) ® exp —2—1(x2+y2) ® exp(ikaxy /1) x

x ©(x9, y3) ® exp(ikRbxy/12) ®y(xy, yo) ®
® exp(—ikbxy /1) Dy(xy, y9) ®

® exp(—ikbxy /1) ®3(xy, yg)} + c.c. *)

As shown in Fig. 1b, at the stage of reconstruction,
the two-exposure hologram is illuminated by the coherent
radiation with the convergent quasispherical wave having
the radius of curvature »=R + [. Spatial filtering of the
diffraction field is performed on the optical axis in the
plane (x3, y3) with an opaque screen p having a round
aperture, and the interference pattern located in the
hologram plane is recorded. The positive lens L forms
the hologram image in the plane (xy, y4).

In the approximation used, the distribution of the
complex wave amplitude of the coherent radiation used
at the stage of hologram reconstruction in the plane
(x9, y) takes the following form:

, k
ug(xa, y2) ~ exp {1 [— TR D @D+

* 8(R]i DE (x5 +y2)° + 0y, yz)] } (6)



86 Atmos. Oceanic Opt. /February 2003,/ Vol. 16, No. 2

where  @¢(xy, y3) is the deterministic function
characterizing possible wave distortions, for example,
due to aberrations of the optical system forming it.

Let us consider reconstruction of the two-exposure
hologram in different diffraction orders separately, since
there is no correlation between their speckle fields.3
Then, ignoring the spatial boundedness of the field
because of the limited size of the hologram, the
distribution of the complex field amplitude in the plane
(x3, y3) for the (+1) diffraction order is determined by
the equation

W, ) ~ [f [0 ey, ) + 5y, 90 ] x

x ug(x9, y2) exp {12_’; [(xy — x3)2 + (yo — yg)z]} X

X exp {— é_;; [(xy — x3)2 + (yy — yg)z]z} dxy dyy. (7)

Substituting the corresponding functions into
Eq. (7) and making use of the integral representation of
the convolution operation for the reference wave in

‘cgﬂ)(xz, y2) and in t§+1)(x2, y»), we obtain
1 1
w23, y3) ~ exp {ik [2—1 3+ y3) - 30 (3 + y%)z}} x
x {‘Do(x& y3) ® @y(x3, y3) ® D3(x3, y3) ®
® @4(x3, y3) ® 1 P5(a3, y3) exp | — 2ul (a5 +y3) | ®
ik o o
® tx3, y3) Alxs, y3; X, y2) exp | = 2l (x5 +y3) | x
. k(1 1
X exp {z |:(P(JC3, y3) tg (ﬁ + 1—3)(x§ + y%)z] } +
’ lk 2 2
+ @5(x3, y3) exp | — 2, (3 + y3) | ® t(xs, y3) x
A(xz = b x )e [ ik (3 + 2)]
X 2= b, y3; X9, xXp| —7— : x
3 Y3 X y2) exp| =5 T3+ Y3
. ik 2. 292
x explio(xz +a, y3)] exp {@ [(x3+ Rb/D* + y3] }x
ik N2, 202
X €Xp g3 [Cx5— D) + y35] ) (8)

where

Axs, y3; X2, Y2) =ff}f exp [=iyy(xy, y1; X2, y2)1x

x explik[ (xy — x3)x0 + (y1 = y3)yo2l /1) dxy dyy day dys

is the complex function, being the result of calculations
at each hologram point;
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o3, y3), Polxs, y3), P3as, y3), Dulas, y3),
(DS(XS’ y3)’ (D‘,S(-XSv y3)

are the Fourier transforms of the functions

. ik
exp ligaCez, 1)1, exp |~ 35 03 + 09? |

. ik
exp [iyo(xa, ¥ a3, ¥3)], exp |:8(R )3 (3 + y%)ﬂ,

By(xy, yy) =
. ki1 1
=exp {—z [(p(mxz, H1y2) +?(ﬁ+l_3>(x% + y%)Z )

. k
By(xy, yo) = exp {—l {(p(me +a, wyy) + @ X

k
x [y + Rb/D* + il + g5 [ =07 + u%y%ﬁ}}

with the spatial frequencies x3/A and y3/Al; the
function y(x9, yo; x3, y3) has the form of the function
wixy, yq; X9, y) with the corresponding change of
variables.

It follows from Eq. (8) that the light field is an
objective speckle field in the plane of formation of the
real image of an amplitude screen. In this case, as
compared to the diffraction limit determined by the
hologram size,4 the objective speckle is widened by the
value determined by the width of the function

Dy(x3, y3) ® Do(x3, y3) ® D3(x3, y3) ® Dyx3, y3) @
® @s(a3, y3) exp [— % (a5 + y%)}

Besides, the information on the unknown phase
function @(xq, ¢) is contained, on the one hand, in the
limits of each objective speckle in the plane (x3,y3),
while on the other hand, this phase function modulates
the speckle field in this plane.

Coincidence of identical speckles of both exposures
in the plane of formation of the real image of an
amplitude screen causes location of the interference
pattern modulating the objective speckle structure in
this plane. This interference pattern has the form

I(x3, y3) ~ 1 + cos[olas + a, y3) —
= olas, y3) + wlxs, y3; b,
where

k 1 1
ylxs, y3; b) = 3 |:4JC§ (m - l—3>b + (623 + 243) x

1 1 1 1
x <W+l—3>b2 + 4x3 Y3 (ﬁ_l_:g)b}

In this case, the spatial size of the interference
pattern with high contrast is limited due to the off-axis
wave aberrations of the hologram. The diameter of a
spot in the plane (x3, y3), within which the
interference pattern has high contrast, can be estimated
using the circumstance that the change of the phase
wyi(xq, y1; X9, yo) is the largest at the shift of axis for
aberrations like coma.®
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When performing spatial filtering of the diffraction
field on the optical axis (see Fig. 1b), if the diameter of
the filtering aperture does not exceed the width of an

interference fringe, we can assume that ®3(x3, y3) =

~ 8(x3, y3) taking into account that it is sufficiently
small. Then the distribution of the complex field
amplitude at the filter exit is determined by the equation

ik
WO, ) ~ e, ) exp | S G+ o) |
x {‘Do(xa, y3) ® D(a3, y3) ® Dylas3, y3) ®
ik
2l (x5 + y%)] ®

zl_kil (x% + y%)} }}, )

where p(x3, y3) is the transmission function of the spatial
filter.6

Assume that the lens L (Fig. 1b) with the focal
length fis in the plane (x3, y3). Besides, assume for brevity
that f=1/2 and [; = I, where [ is the spacing between
the planes (x3, y3) and (x4, y4). Then, using the Fresnel
approximation, since the allowance for the higher
approximation orders leads only to changes in the
distribution of subjective speckles in the recording
plane 3 of the interference pattern modulating the speckle
structure, determine the complex amplitude in the plane
(x4, y4). Neglecting the factor characterizing the phase
distribution of a spherical wave that is insignificant for
the further consideration, it takes the form:

® {[@5(963, y3) + (Dls(X3, y3)]exp |:_

® t(x3, y3) exp [—

u(+1)(x4, y4) -

1
~eXp{ {@o( —x4 Y tg [m ,3](x4+y4) }}

ik kyd
X {eXp [2—?1 (3 +yD® {eXp {—i[(p(—mm, —H1Y4) +% X

1 1 .
x (ﬁ + 73) (af+ yﬁ)z]} +exp [—ip(—pyxg +a, —pyy)] x
ikyd
X exp {— 87&31 [(xs = Rb/ D + yﬁlz} x

i 4
x exp {— Sp LG+ b/ + yif}}} x
ik 5 9
x 1 F1(ag, yg) ® exp| =7 i+ D) | 1 ® Py, yg), (10)

where F{(x4, y4) and P(x4, y4) are the Fourier transforms
of the functions #(x3, y3) and p(x3, y3) with the spatial
frequencies x4 /Al and y4 /Al

Since the function

exp [—ip(—pay, —ny] +

+exp [—ip(—pag + a, —y) — wiay, yas wb)],
where
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y1(ay, yas yb) = [4354(1?} R2l)(u1b)+(6x4+2y4)x

2
1 1 Ky
x (l_3+ﬁ> (u1b)* + 4y i ( B RZZ) (Mb)J

changes slowly with the coordinate, it can be factored
out of the convolution integral signs in Eq. (10). Then
the distribution of illumination in the plane (x4, y4) in
the (+1) diffraction order is determined by the equation
Y4 ~

— o(—yxg, —ye) + wilay, ¥4 mb)1} x
. k 1 1
exp {1 {(po(—x@ —y)+ §|:(R_+ DEN l_3:| (xi + y%)Z}} X

ik ik
X {exp[% (xierﬁ)} ®exp|: SM <R3+ 13) @A+ J}

2
(1)

1Py, yo) ~ {1+ coslo(—pyxy + a,

X

ik
x {F1(x4, Y1) ® exp [% (2 + yﬁ):|} ® P(xy, y4)

As follows from Eq. (11), the subjective speckle
structure in the plane of hologram image formation is
modulated by interference fringes. The interference
pattern has the form of a shear interferogram in infinitely
wide bands that characterizes the controlled wave front.
Due to spherical aberration of the hologram it can be
distorted, if the function (x4, y4; nib) is nonzero.

Let the diameter D of the wave front controlled fall
within the domain of applicability of the approximation
used, that is,

2:J0.8%1% < D2R + 1) /R < 2N[1.6105.

Then, to exclude the control error, we can find the
maximum permissible value of the lateral shift, which
does not exceed the optimal value and for which we can
assume that (x4, y4; 14b) =0. Starting from the
criterion of accuracy in determination of the phase equal
to 0.1-2xn and its maximum variation on the shift axis,
from the equation for the function yq(xy4, y4; pnib), the
maximum permissible value of the lateral shift is the
result of solution of the equation

1
6 (zS + R12> (D/2)* (wb)* +

+4(?§ R2l)(D/2)3(u1b)—08x 0.

For the (—1) diffraction order, the distribution of
the complex amplitude of the two-exposure field in the
plane (x3, y3) (see Fig. 1b), when R > [, takes the form

_ 1 1
w3, y3) ~ exp {ik [2—1 3+ y3) - Ry (3 + y§)2:|} x

x {(D()(JCg, y3) ® @y(x3, y3) ® D3(x3, y3) @ Dyla3, y3) ®
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ik ~ ik
®exp [— 4;_11 (G + yg)} ® {CDS(X& y3) exp [21}111 (5 + y%)} ®
ik
® t(-x3, ~y3) A*(=x3, ~y3; X2, y2) exp [2;11 (x5 + y%)] x

k 1 1
X exp {—i [(p(—m “y3) Ty (ﬁ + 1—3)(;5% + y%ﬂ } +
~, itk o 9
+ @5(363, yg) exp m (JC3 + ]/3) ® t(_xgy _]/3) X
A% b, s 32, 5) exp | 3 (4 0 |
X X3 y TY3s X2, Y2) €EXP 2“11 X3 Y3 x
) ik 2, 292
x exp[—ip(—x3+a, —yg)]exp{——8R3[(x3—Rb/l) +y3] }x

X exp {— é_;g [(x3 + b)? + y%]z}}}y (12)

where ®s(x3, y3) and @5(x3, y3) are the Fourier
transforms of the functions B} (x, ) and B3(xy, y)
with the spatial frequencies x3,/Al and y3,/\l.

Taking into account that the function exp[—ip x
x (—x3,—y3)] +exp {~i[o(-x3 + a, —y3) + y(xs3, y3; —D)]}
varies slowly with the coordinate as compared with the

ik

function exp [— m (x5 + y%)] and the assumption that
within the diameter of the filtering aperture

o(=x3 + a, —y3) — ¢(=x3, —y3) + ylxz, y3; —b) <,

the distribution of the complex field amplitude at the
exit from the spatial filter is determined by the equation

_ 1k
uTP s, y) ~ placs, y3) exp [12_1 (a3 + yg)] x

x {‘Do(xs, y3) ® Dy(a3, y3) ® D43, y3) ®
ik o - -,
@exp| =7, 75Ty (@) [Ps(as, yy) + B5(as, y3)] x

ik ik
X exp [m (x% + y%)}@ t(=x3,~y3) exp[m (x% + y%)} } }

(13)

As for calculations of the distribution of the complex

field amplitude in the plane (x4, y;) (see Fig. 1b) in

the (+1) diffraction order, let us use the Fresnel

approximation. Then based on Eq. (13) in the (=1)

diffraction order the distribution of the complex field
amplitude in this plane takes the form

u(_1)(x4, y4) -
. k 1 1
~ exp {1 {(po(—x4, ~ys) +§[(R_+ D3 _l_SJ (xi +y§)2 +

k ik
B} e[ B Gt b o
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. Rt AN, o a0
®{ exp {l [(P(—M?% —H1Y4) +?<ﬁ+l_3> (i)™ | [+
+ exp [ip(—pas + @, —yy4)] x

ik
X exp {—81531 [Cxs — Rb/pwD? + yﬁ]}% x
ikui 2, o
xexp 1 gp [(eg+b/n)” + yil x

ik
o Fates v @ exo Lo | Py, 90, (1)

where Fo(x4, y4) is the Fourier transform of the
function t(-x3, —y3) with the spatial frequencies x4,/ Al
and yy /Al

Based on Eq. (14) and the above statements, in
calculating 1*V(xy, y,), the illumination distribution
in the plane (x4, y4) in the (—1) diffraction order is
described by the equation

1Py, yo) ~ {1+ coslo(—pyxg + a, —iyg) -
= o(pyay, —yye) + wiay, ygs wb) 1} x

. k 1 1
exp {1 {(po(—M, —y4) +§[(R +1)3 _l_3:| (xi + y%)Q +

X

k ik
+ % (22 + yﬁ)} } {exp [— —2;” (2 + yﬁ)} ®

ikni 11
® exp [%(ﬁ-‘_l?) (xﬁ + yi)2:|} X

2
ik
X {Fz(x4, y4) ® exp [—%(Jf% + yi)}} ® P(x4, ys)

.(15)

A feature of the interference pattern located in the
hologram plane and corresponding to the (-1)
diffraction order is that its spatial size is twice as small
as in the (+1) order. This follows from Egs. (10) and
(14), according to which the light field is nonzero
within the domain of existence of the functions
exp [—ikm [ + y2) /211 ® t(—pyxy, —ys) for  the
(+1) diffraction order and exp [ikw[(xF + y) /1] ®
® t(—2u24, —2u1y4) exp [ikug[(axF + yD) /11 for  the
(=1) order. For the spatial size of the interference
pattern in the (—1) diffraction order to correspond to
its size in the (+1) order, at the stage of hologram
reconstruction it is necessary to illuminate the screen
by a coherent radiation of a converging quasispherical
wave having the radius of curvature » < (R + DI /R. In
this case, it should be kept in mind that in the plane of
formation of the real image of the amplitude screen
spaced by I' <I(R+1)/2R from the hologram, the
scale of the interference pattern decreases. In this
connection, it is necessary to decrease the maximum
allowed diameter of the filtering aperture, and this
leads to an increase of the subjective speckle size in the
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recording plane of the interference pattern. As a results,
the visibility of the interference pattern may decrease
down to zero, when the speckle size becomes comparable
with the width of an interference fringe.”

If R < at the stage of recording the two-exposure
hologram, then the phase distribution of the convergent
spherical wave is present at the stage of its reconstruction
with a coherent radiation of a converging quasispherical
wave having the radius of curvature »r =R + [ in the
distribution of the complex field amplitude in the (1)
diffraction order at the hologram output. As a result, the
spatial size of the interference pattern recorded in the
(—1) diffraction order corresponds to its size in the (+1)
diffraction order if performing the spatial filtering of the
diffraction field at the distance [ from the hologram.

Converging quasispherical wavefront

In the case of a two-exposure recording of the
hologram with the amplitude screen illuminated by a
coherent radiation with a converging quasispherical wave
and R>1[, to reconstruct the hologram, coherent
radiation of a diverging quasispherical wave having the
radius of curvature » = R — [ is used.! Spatial filtering
of the diffraction field on the optical axis in the plane
of formation of the real image of the amplitude screen
allows the recording of the interference pattern located
in the hologram plane and characterizing the wave
front controlled to be done. For the used order of
approximation, when the diameter of the wave front
controlled obeys the condition

20813 < DR - ) /R < 2A[1.6M5,

the interference pattern modulating the subjective
speckle structure has the form

ICxg, yg) ~ 1+ coslo(—poxy + @, —poyy) —
= o(—poxy, —poys) + oy, ys; mob)l,

where puy = R/ (R — 1) is the scale factor;

2 2
2 K2
Yoy, ys; wob) = [4364 (RQZ - 1_3) (npb) +

2
+ (627 +2y7) (Rﬂ 13>(M2b) +4x4 Yy (;gl )(uzb)J

is the phase function caused by spherical aberration of the
hologram, which determines the wave front control error.

As in the case with the control of a diverging
quasispherical wave front for R > [, the spatial size of
the interference pattern recorded in the (—1) diffraction
order is twice as small as in the (+1) order. For the
spatial size of the interference pattern located in the
hologram plane in the (=1) diffraction order to
correspond to its size in the (+1) order, at the stage of
hologram reconstruction, it should be illuminated by a
coherent radiation of a converging quasispherical wave
having the radius of curvature » < (R—10)I/R. Then the
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spatial filtering of the diffraction field should be
performed in the plane of formation of the reduced real
image of the amplitude screen spaced by ["<I(R—1) /2R
from the hologram.

If double-exposure recording of the hologram is
performed when R < [, then it should be reconstructed
with a coherent radiation of a converging quasispherical
wave having the curvature length » =1 — R. Then at
the distance [ from the hologram, where the real image
of the amplitude screen is formed with unit
magnification, spatial filtering of the diffraction field is
performed on the optical axis and the interference pattern
located in the hologram plane and characterizing the
wave front controlled is recorded. For the approximation
order used, when the diameter of the wave front
controlled satisfies the condition

2J0.8M3 < DI/R < 2N1.6115,

the interference pattern modulating the subjective
speckle structure has the form

I(JC4, y4) ~1+ COS[(p(H3X4 + a, H3y4) -
= oCusry, nzyg) + walay, yg nsb)l,

where u3 = R/ (I — R) is the scaling coefficient;

Rzl) (ugb) +

+ (6% +2y5) (13 Rlz) (usb)? + 424y (?33 Rzl) (H3b)J

is the phase function caused by spherical aberration of
the hologram, which determines the wave front control
error. Besides, in the case considered, the spatial size of
the interference pattern is the same in the (+1) and (—1)
diffraction orders. This is explained by the fact that in
the (=1) diffraction order the reduced real image of the
amplitude screen is formed at the distance (I —
R) /2R < [ from the hologram.8

If the spatial filtering of the diffraction field is
performed in this plane, then the maximum permissible
diameter of the filtering aperture should be decreased
and, besides, in the recording plane of the interference
pattern the spatial size of the area caused by the constant
component of the hologram transmission increases.

Thus, the results of this analysis have shown that
the two-exposure record of the hologram of the
amplitude screen by the Gabor scheme for the wave
front control is accompanied by control errors because
of spherical aberration of the hologram, when the wave
front diameter increases. In the third-order approximation,
for the complex amplitude of the field it is possible to
determine the systematic error, whose value depends on
the hologram recording geometry, lateral shift, and
wavelength of radiation wused for recording and
reconstruction of the hologram. In this case, at the
known diameter of the wave front controlled it is
possible to determine the maximum permissible value of

13
y3(xg, ¥4 u3b) = [4964 ( 73



90 Atmos. Oceanic Opt. /February 2003,/ Vol. 16, No. 2

the lateral shift, which does not exceed the optimal
value and permits the control error to be excluded.
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