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Similarity theory and dimensional analysis are applied to construction of a relationship for the 
spectral aerosol extinction coefficient in the atmospheric window 0.48 ⋅⋅⋅⋅ 10$4 < λ < 0.76 ⋅⋅⋅⋅ 10$4 cm. The 
relationship is justified using the Mie theory. The results allow one to compare the in situ determined 
humidity dependence of the spectral extinction coefficient with available laboratory data on variation of 
the aerosol particle radius in the moist air. It is shown that the variations can be efficiently described in 
terms of the modified Raoult law for concentrated and moderately supersaturated solutions. 

 

Coastal haze consisting of a great deal of droplets 
condensed on the particles of marine origin is a classic 
example of aerosol formation from inorganic soluble 
particles. Aerosol constituent of the haze is formed at 
destruction of small foam bubbles of near-coast 
waves1,2 and has a composition close to the chemical 
composition of sea salt, i.e., 78% NaCl, 11% MgCl2, 
and 11% CaSO4, Na2SO4, and K2SO4. According to 
Ref. 1, the salt aerosol particles, remained at 
evaporation of sea haze droplets, have the greatest 
radius of 40 ⋅ 10$6 cm with maximum distribution in the 
range 10 ⋅ 10$6 to 30 ⋅ 10$6 cm. It is reasonable to score 
the characteristic size of coastal haze particles on the 
general Junge scale of the atmospheric aerosol radii. 
According to Ref. 2, the total spectrum of atmospheric 
aerosol radii can be divided into three parts (Table): 

(a) Aitken nuclei, lying in the range from  
0.5 ⋅ 10$6 to 20 ⋅ 10$6 cm; 

(b) large nuclei in the range from 20 ⋅ 10$6 to  
1 ⋅ 10$4 cm; 

(c) giant nuclei in the range greater than  
1 ⋅ 10$4 cm. 

Thus, the coastal haze particles should be treated 
as a mixture of large condensation nuclei and the upper 
part of the spectrum of soluble Aitken nuclei. 

Wright2,3 was a pioneer in systematical 
experimental and theoretical studies of the effect of 
humidity on the coastal haze. Assuming that the number 
density of soluble nuclei in the moist air is constant and 
the particle spectrum is monodispersed, he has explained 
the decrease of visibility at the increase of humidity by a 
change of the aerosol particle size. The mean particle  
 

radius was calculated provided that the sea salt solution 
droplet and water vapor are in thermodynamic 
equilibrium. Within the Wright approximation,2,3 
optical properties of coastal hazes are related to large 
soluble droplets. According to Refs. 2 and 3, the 
number density of large particles was 63 cm$3, while 
their mass and mean radius were 1.1 ⋅ 10$13 g and 

2.3 ⋅ 10$5 cm, respectively. 
In this paper, based on Wright’s3 and Hanel’s4 

thermodynamic ideas, a sea haze particle is considered 
as a droplet of sea salt water solution only at the 
relative humidity higher than some threshold value.  
At lower values of the relative humidity, a sea salt 
particle is considered as a solution droplet containing a 
solid soluble core or as a droplet of supersaturated 
solution. The spectral Beer law is used to describe  
the spectral aerosol extinction coefficient of the sea 
haze in the visible atmospheric œtransparency windowB  
0.48 ⋅ 10$4

 < λ < 0.76 ⋅ 10$4 cm. The obtained results 
enable us to compare field observations of the humidity 
dependence of the spectral aerosol extinction coefficient5 
with the well-known laboratory observations of the 
aerosol particle radius variation in the moist air.6 The 
use of more complete thermodynamic model of 
transformation of a droplet has shown that the 
humidity dependence of the aerosol extinction 
coefficient includes the ranges both of unambiguous and 
ambiguous humidity dependences, which have the 
hysteresis loop shape. Thermodynamic interpretation of 
the obtained results is suggested, which uses a 
modification of the Raoult law for concentrated and 
moderately supersaturated solutions. 

Table 

Condensation nuclei
Characteristics of particles

Aitken Large Giant
Radius, cm 0.5 ⋅ 10$6 

20 ⋅ 10$6 
20 ⋅ 10$6 
1 ⋅ 10$4

1 ⋅ 10$4

2 ⋅ 10$4
2 ⋅ 10$4

3 ⋅ 10$4
3 ⋅ 10$4

5 ⋅ 10$4
5 ⋅ 10$4

10 ⋅ 10$4

Mean number density of 
particles in 1 cm3 42500 132 2.0800 0.0880 0.0244 0.0051

Mass, mg/m3 17 26 23 4.2 5.1 9.1
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Formula for the extinction coefficient of 
the coastal atmospheric haze in the form 

of the spectral Beer law 
 
The monochromatic flux Jλ passing through an 

optically dense layer of the atmospheric air of the 
thickness ds is attenuated due to absorption and 
scattering. According to the B ouguer law, this 
attenuation is proportional to Jλ and ds. Molecular 
absorption and scattering of light in the œtransparency 
windowB in the visible wavelength range are minimal 
and determined mainly by the presence of atmospheric 
aerosol. 

The extinction coefficient of chemical and colloid 
diluted solutions is often proportional to its mole 
concentration. This phenomenological dependence is 
known as the B eer law.7 Experimental dependence of 
the extinction coefficient αλ on the volume 
concentration c for water solution of Cu2SO4 is shown 
in Fig. 1. 

 

 

Fig. 1. Experimental confirmation of the B eer law for the 
water solution of Cu2SO4. The solution concentration is 
plotted along the horizontal axis, the extinction coefficient at 
the fixed wavelength λ = 0.6 ⋅ 10$4 cm is plotted along the 
vertical axis. 

 
Consider the coastal haze as the solution of aerosol 

in air. Let ρa be the density of aerosol cloud, ρ is the 
density of air, and qa = ρa/ρ is the aerosol mixture 
ratio. B ased on dimensionality grounds, we modify the 
B eer law, introducing the dependence on the 
wavelength λ in the visible œtransparency windowB 
0.48 ⋅ 10$4 < λ < 0.76 ⋅ 10$4 cm. Then, without loss of 
generality, we assume that the spectral formulae of the 
B ouguer and B eer laws take the form 

 
dJλ

ds  = $ αλ Jλ;   αλ = 
3πa *wc

λ  
ρa

ρ  ,  (1) 

where αλ is the coefficient of aerosol monochromatic 
extinction, and 3πa *wc is the constant numerical 
parameter. 

To justify theoretically and experimentally the a 
priori introduction of the spectral B eer law (1), we 
transform its right part using statistical characteristics 
of the aerosol cloud. 

Let ρwc be the characteristic density of aerosol 
particles, whose magnitude is close to the water 
density. Then the ratio of mixture of the system of 
monodispersed aerosol particles in air and the aerosol 
extinction coefficient take the form 

 qa = 
ρa

ρ  = 
4
3 π 

ρwc

ρ  N r̄3;  αλ = 
4π2a *wc

λ  
ρwc

ρ  N r̄3, (2) 

where r̄ is the mean radius of an aerosol particle, N is 
the total number of particles of the aerosol cloud in the 
unit volume, π = 3.14… . 

To justify Eq. (2) from the standpoint of physical 
optics, we assume that the light extinction is caused 
only by the effect of scattering. Let r be the radius of 
aerosol particle and N(r)dr is the number of particles 
in the range from r to r + dr. Consider the 
monodispersion spectrum N(r) = Nδ(r $ r̄), where  
δ(r $ r̄) is the Dirac delta-function. Then, according to 
the Mie theory7 in the monodispersion spectrum 
approximation we obtain 

αλ = ⌡⌠
0

∞

 πr2 K(ξ) N(r) dr = πr̄2 K 






4(m $ 1) πr̄
λ   N. (3)

Here K(ξ) is the scattering efficiency factor, the 
function with known values, ξ = 4 (m $ 1) πr/λ is the 
diffraction parameter, m is the refractive index of an 
aerosol particle. 

For the atmospheric haze consisting of the soluble 
Aitken nuclei, the mean radius r̄ of a particle varies in 
significantly more narrow range than the entire 
spectrum of fine aerosol. In the variation range of the 
mean radius 4 ⋅ 10$6 < r̄ < 40 ⋅ 10$6 cm, at the 
œtransparency windowB radiation in the visible 
wavelength range 0.48 ⋅ 10$4 < λ < 0.76 ⋅ 10$4 cm and 
the refractive index of water m = 1.33, the 
corresponding parameter ξ varies in the range 
0.22 < ξ < 3.45. It is important that K(0) = 0, and the 
first maximum of K(ξ) can be reached at ξ ≈ 4 (see 
Ref. 7). So, the linear dependence K(ξ) can be used as 
a rough approximation. It is well known that the 
refractive index of a solution depends on the density of 
a substance according to the Gladstone-Dale 
relationship.7 Thus, 

 K(ξ) = ξ = 
4(m $ 1) πr̄

λ  ;  (m $ 1) = a *wc 
ρwc

ρ  , (4) 

where a *wc is the dimensionless refraction coefficient. 
Taking into account all the aforementioned, the second 
formula (2), proposed earlier, follows from Eqs. (3)  
and (4). 
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Now we suggest the experimental reasoning of 
relationships (1) and (2). Considering atmospheric haze 
as a solution of aerosol in air, assume the parameters N 
and ρwc/ρ to be constant. Then it follows from 
formula (2) that the magnitude of αλ varies depending 
on the mean radius of aerosol particle r̄. According to 
Refs. 2 and 3, at a change of humidity, r̄ varies so that 
the magnitude of the saturated vapor pressure on the 
droplet surface coincides with the  water vapor pressure 
in air. Otherwise, the processes of evaporation and 
condensation necessarily would change the droplet 
radius. Thus, instead of the function (2) of the mean 
radius, it is possible to consider the dependence of the 
aerosol extinction on humidity. 

The field data5 on the dependence of the 
extinction coefficient on humidity in the coastal sea 
haze are shown in Fig. 2. 

 

 
Fig. 2. Extinction coefficient αλ as function of humidity f in 
sea coastal haze from the data of Ref. 5 (λ = 0.48×10$4 cm). 

 
On this basis, for the experimental reasoning of 

formula (2), it suffices to illustrate the agreement 
between Eq. (2) and field observations: 

(a) at variable wavelength λ and constant 
humidity f; 

(b) at constant wavelength λ and variable 
humidity f. 

The experimental data1 confirming the hyperbolic 
dependence of the aerosol extinction coefficient (2) on 
λ at fixed humidity f are shown in Fig. 3. 

Now we consider the possibility of experimental 
reasoning of the relationship (2) at fixed λ and variable 
f. Assume parameters n and ρwc/ρ to be constant, then 
it follows from Eq. (2) that 

 α*λ = 
αλ(f)

αλ(fs)
 = r̄3(f)

r̄3(fs)
 = r*

3, (5) 

where fs is some fixed value of relative humidity, αλ(fs) 
and r̄(fs) are the aerosol extinction coefficient and the 
effective radius of aerosol particle, respectively, at the 
fixed value of fs; α*λ and r* are the dimensionless values 

of the aerosol extinction coefficient and radius. It is 
essential that the relationships in right- and left-hand 
sides of Eq. (5) can be changed independently. The 
coincidence of the data obtained experimentally 
confirms Eq. (5), and, hence, the initial B eer 
relationship (2). 

 
Fig. 3. Experimental data on the dependence of the extinction 
coefficient αλ on the wavelength λ at different values of 
relative humidity according to Ref. 1 (marked by signs). 
Hyperbolic approximations of the aerosol extinction coefficient 
on the wavelength λ at fixed values of humidity f are drawn 
by solid lines. Curve 1 corresponds to 93%, 2 to 84%, 3 to 76% 
and 4 to 60%. 

 

Experimental evidences and 
thermodynamic theory of change  

of radius of a water droplet containing  
a solid soluble Aitken nucleus, 

depending on variations of humidity 
 

Laboratory investigations of the change of the 
solution droplet containing a solid soluble core 
depending on variations of humidity were described in 
Ref. 6. The solid crystal of NaCl with the effective 
radius a = 2.74 ⋅ 10$6 cm was placed into the 
atmosphere of moist air. Measurements of the 
equilibrium droplet radius were carried out at preset 
values of air humidity. The experimental results are 
shown in Fig. 4a. 

As humidity increases (the interval AB), the 
adsorption process occurs on the surface of a soluble 
particle. It practically does not change the initial radius 
of a dry crystal. As humidity reaches some threshold 
value (the point B), covering the crystal with a water 
film starts, and the crystal partially dissolves in it 
forming a saturated solution. Thus (in the interval BC) 
the radius of the solution droplet, containing a solid 
soluble core, monotonically increases almost without 
changing the humidity of air. In the point C the crystal 
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is completely dissolved forming a droplet, the radius of 
which is approximately twice as large as the radius of a 
dry crystal. Further increase of humidity leads to the 
increase of the equilibrium radius of the solution 
droplet (the interval CD). Of prime interest should be 
the experiments, which deal with successive decrease of 
humidity. As humidity decreases, the droplet radius 
begins to decrease (the interval DC). However, when 
the point C is reached, a solid crystal is not formed 
inside the droplet. As humidity decreases, the 
supersaturated solution exists up to the point E. When 
this threshold value is reached, the droplet of the 
supersaturated solution is crystallized to the initial 
radius of the dry crystal practically without change of 
humidity (the interval EA). Thus, the curve of 
changing the radius of a droplet containing a solid 
soluble core, changes variously depending on the 
increase or decrease of humidity, i.e., the directed change 
of humidity forms the hysteresis loop. The realistic 
pattern (by the data of Ref. 6) of changing the radius 
of a droplet containing the NaCl solid soluble crystal 
with radius a = 2.74 ⋅ 10$6 cm is shown in Fig. 4b. 

 

 
 = b 

Fig. 4. The change of the radius of droplet r containing the 
solid soluble core as function of humidity f: schematic pattern 
of the process of adsorption, dissolving, and crystallization (a), 
experimental data on moistening the crystal of NaCl of the 
radius a = 2.74 ⋅ 10$6 cm (b).6 

 
It is important that the profile ABCDE is 

consistent with thermodynamic theory. The curve CDE 
can be calculated by the Keller model2 describing the 
saturated vapor pressure above the droplet. Profile AB 
is determined with high accuracy when solving the 
problem on the saturated vapor pressure above the 
solution droplet containing a solid soluble core.8,11 
Profile BC can be calculated from the condition of 
thermodynamic stability of the solution droplet 
covering the solid core.9 

 

Comparison of experimental data on 
variations of the extinction coefficient 
and the effective radius of an aerosol 

particle 
 

To justify experimentally the proposed form of the 
B eer law (5), we represent the field observations5 
shown in Fig. 2 in a new coordinate system. We plot 

the value of relative humidity f along the vertical axis, 
and the value (α*λ)

1/3 along the horizontal axis, 
assuming in Eq. (5) that fs = 75%, αλ(fs) = 0.45 km$1. 

The corresponding laboratory observations6 (see 
Fig. 4b) are also represented in the new coordinate 
system. The value of relative humidity is plotted along 
the vertical axis, and r* along the horizontal axis, 

assuming in Eq. (5) that fs = 75%, r̄(fs) = 4.2 ⋅ 10$6 cm.  
Quite good agreement of the experimental points 

(Fig. 5) is the evidence of correctness of the 
relationship (5) and, hence, the validation of the form 
of the B eer law (2). 

 

 
Fig. 5. Comparison of the dependences of experimental data 

on the dimensionless extinction coefficient (α*λ)
1/3 and 

dimensionless radius r* on relative humidity f. 

 

Note that the unambiguous dependence αλ(f) 
exists only at f > fs = 71%. There is no unambiguous 
dependence αλ(f) at f < fs, because the humidity 
hysteresis results in scattering of experimental values of 
αλ(f) along the corresponding branches r̄(f). 

 

Equation for state of concentrated and 
moderately supersaturated solutions and 

their vapor 
 

Let νw and νws be the specific volume of pure 
solvent and solvent in the solution, respectively. The 
approximation of œthe volume of saturated solutionB is 
used below. According to the approximation, the 
volume of concentrated and moderately supersaturated 
solutions is identified with the volume of saturated 
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solution (see Ref. 12 for greater detail). Assume that 
the soluble substance and solvent, like gas, occupy the 
entire volume. Taking into account the fact that the 
volume of saturated solution somewhat exceeds the 
volume of pure solvent, it is possible to write for 
concentrated and moderately supersaturated solutions 

 νws = k∞ νw, (6) 

where k∞ = 1.11 for the solutions of NaCl.10,12 
The general Donnan-Guggenheim osmotic equation 

of state, generalized to the solution of electrolyte, has 
the form 

 

π*νw/Rw T = c Φ(c, T),
Φ(c, T) = (i0 + i1c + i2c2 + …). (7) 

Here π* is the osmotic pressure, c is the mole 
concentration, Φ(c, T) ≥ 0 is the osmotic coefficient, 
the non-negative function depending on the nature of 
the solution, in(T) are the functions fixed for each 
solution, Rw is the gas constant of water vapor related 
to the universal gas constant R through the relationship 
Rw = R/µw, where µw is the molecular mass of water. 

The general osmotic equation of state (7) for 
concentrated unsaturated and moderately 
supersaturated solutions can be expanded by a Taylor’s 
theorem in the vicinity of the saturation point c = c∞. 
Then 

 
νw

RwT (π* $ π*∞) = i∞ (c $ c∞), (8) 

where π* is the osmotic pressure of the saturated 
solution above the plane surface of soluble substance, 

i∞(T) =
∂
∂c Φ(c, T) c | c∞

 is some empiric function 

constant under isothermal conditions. 
The value of c∞, corresponding to the 

concentration of saturated solution, is known from the 
solution Tables. The values of i∞ and π*∞ can be 
determined from direct measurements of the osmotic 
pressure π* or from the known values of the osmotic 
coefficient. Comparison of the experimental data10 with 
the relationship (8) was performed in Refs. 8, 9, and 
12. According to Refs. 8 and 9, π* = 39.058 MPa for 
the NaCl saturated solution at t = 20°C, c∞ = 0.1109, 
i∞ = 3.40 (Fig. 6). 

Note that, although formula (8) is quite rough 
approximation of equation (7), nevertheless, as follows 
from Fig. 6, it is acceptable for concentrations in the 
range  c $ c∞ /c∞ < 0.4. 

Obviously, at small deviations of concentration of 
a solution of an arbitrary chemical origin from 
saturation the following equation of state is also 
fulfilled: 

 
νw (π* $ π*∞)

RwT  = i∞ c∞ ln 
c
c∞

 .  (9) 

 
Fig. 6. Osmotic pressure π* as function of the mole 
concentration c of the solution of NaCl at fixed temperature 
t = 20°C from the data of Ref. 10 is shown by solid line. 
Dotted line shows the suggested approximation (8). 
 

Further the equation of state in the form (9) is 
used for analytical description of transformation of 
spherical droplets of solution in the atmosphere of 
moist air, as well as for calculation of the aerosol 
extinction coefficient. 

Under natural conditions water can be evaporated 
from the solution forming water vapor. Assume that the 
saturated vapor of atmospheric air fulfils the ideal gas 
equation of state, i.e., 

 Eνv = RwT, (10) 

where νv and E are the specific volume and the pressure 
of the saturated water vapor, respectively. 

 

The Raoult law for concentrated 
solutions and transformation of sea haze 
droplets in the atmosphere of moist air 

 
Let water vapor  in atmospheric air be in contact 

with the volume phase of water solution along a plane 
surface. Assume that the thermodynamic system is in 
the thermostat T at fixed external pressure p being a 
sum of pressures of dry air and water vapor E. 

Under conditions of thermodynamic equilibrium, 
the specific chemical potential of water vapor ϕv is 
equal to the specific chemical potential of water in 
solution ϕws. Vapor in the system is at saturated 
pressure E, and hydrostatic pressure of water in 
solution is determined by external pressure p, which 
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decreases due to the osmotic pressure π*. Finally, on 
the plane surface of the solution 

 ϕv(T, E) = ϕws(T, p $ π*). (11) 

Let E s
∞ be the pressure of saturated vapor above 

the plane surface of saturated solution with osmotic 
pressure π*. Then the phase equilibrium condition (11) 
takes the form 

 ϕv(T, E s
∞) = ϕws(T, p $ π*∞). (12)

Subtracting Eq. (12) from Eq. (11), we obtain 
the main relationship 

 ϕv(T, E) $ ϕv(T, E s
∞) = 

 = ϕws(T, p $ π*) $ ϕws(T, p $ π*∞). (13) 

Let us transform the right- and left-hand sides of 
Eq. (13) taking into account Eqs. (10), (6), and (9), 
then 





ϕv(T, E) $ ϕv(T, E s
∞) = ⌡⌠

E
s
∞

E

 νv dE = RwT ln 
E

E s
∞
,

ϕws(T, p $ π*) $ ϕws(T, p $ π*∞) = ⌡⌠
p$π*

∞

p$π*

 νws dp =

       = $ k∞ νw(π* $ π*∞) = $ j∞ RwT ln 
c
c∞

.

 (14) 

Finally, the phase equilibrium condition (13) 
takes the form of modified Raoult’s law for 
concentrated and moderately supersaturated solutions 

 ln 
E

E s
∞
 = j∞ ln 

c∞
c  ,  j∞ = k∞ i∞ c∞. (15) 

The experimental values of dimensionless pressure 
of the saturated vapor above the NaCl solution and 
calculated by formula (15) are compared in Fig. 7. 
Vertical axis corresponds to the ratio of the pressure of 
the saturated vapor above E to the value of pressure of 
the saturated vapor above the plane surface of pure 
water E∞. The ratio of the number of moles of the 
dissolved salt to the total number of moles in the 
solution equal to c/(1 + c) is plotted along the 
horizontal axis. 

Let a solid particle of radius a be completely 
dissolved in the solution droplet of radius r. Then, 
according to the approximation of œvolume of saturated 
solution,B the concentration c can be related to  the 
solution droplet radius r by the formula  

 c∞/c = r3/r3s, (16) 

where rs is the radius of the saturated solution droplet 
at dissolving the solid particle of the radius a in water. 

Taking into account Eq. (16) for large spherical 
droplets, above which the pressure of saturated vapor 
does not depend on the surface tension coefficient, 

relationship (15) takes the following form of the 
modified Raoult law: 

 r3/r3s = (f/fs)
1/j∞, (17) 

where r and rs are the radii of the solution droplets at 
relative humidity f and relative humidity of saturation 
fs, respectively. 

 

 
Fig. 7. Comparison of the dependences of experimental data 
on the pressure of saturated vapor over the solution of NaCl 
(solid line) and the values of the saturated vapor pressure 
calculated by formula (15) (dotted line). 

 
Using Eqs. (5) and (17) and assuming that the 

sea atmospheric haze consists only of large droplets of 
solution, we obtain the dependence of the spectral 
aerosol extinction coefficient αλ in the œtransparency 
windowB on relative humidity, similar to that 
considered in Ref. 4: 

 αλ(f) = 
β0

λ  



 

f

fs
 

1/j∞

, (18) 

where β0 is the constant numerical parameter, and λ is 
the light wavelength. 

Field observations1,5 at fixed values of relative 
humidity and their approximation by the relationship 
(18) are shown in Fig. 7. The results of comparison 
show that the relationship (18) quite well corresponds 
to the experimental data in the moderate range of 
variation of humidity for the atmospheric œtransparency 
windowB at 0.48 ⋅ 10$4 < λ < 0.76 ⋅ 10$4 cm. 
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