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Investigations on adaptive optics conducted during the last fifteen years at the 
Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences 
are summarized in this paper. The atmospheric turbulence is one of the most important 
factors which determine the limit of achievable characteristics of the present 
optoelectronic systems. Therefore, the main attention is paid in the paper to the 
adaptive optics capability to eliminate the effect of atmospheric turbulence on the 
formation of laser beams and optical images. 

 
This paper is entirely based on the investigations 

performed by the author himself or under his supervision at 
the Laboratory of Applied and Adaptive Optics of the IAO, 
SB RAS. 

The paper is written as a review, so every section's 
title is followed by the indication of a year when the 
investigations described were completed. 

Investigations on correction for fluctuations in optical 
beams and images formed in a turbulent atmosphere, have 
been started at the IAO in the early 80s. Just at that time 
we have realized that simplest correction algorithms (e.g., 
the ones correcting only for the tilt of the phase front) are 
preferable because multicomponent adaptive correctors are 
too hard for control in the turbulent atmosphere. 

 
1. CORRELATION BETWEEN RANDOM 

DISPLACEMENTS OF THE GRAVITY CENTERS OF A 

BEAM AND  

RELEVANT IMAGE (1978) 
 

We start with Ref. 1 where we have examined the 
possibility of correcting for random angular displacements 
of the energy center of an optical beam propagating in the 
turbulent atmosphere, by controlling random angular 
position of an image center of some reference beam. A 
reference beam is obviously formed under the action of the 
same inhomogeneities of a turbulent atmosphere as that to 
be corrected (Fig. 1). 

 

 
FIG. 1. An optical experiment where the same optical 
system forms both a beam and an image. Designations:  
Σ – tracking aperture, AE – adaptive element, IPR – 
image photorecorder, GCM – meter of image's center of 
gravity, and Amp – amplifier to control adaptive 
element. 

 

Let us examine the cross correlation between random 
displacements of the center of gravity of an optical beam 
formed in a turbulent medium layer and the image at the 
focal plane of an optical system. The former ones are 
determined2 by the vector 
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where n
1
(ξ, r) describes refractive index fluctuations at the 

point (ξ, r), I(ξ, r) is the field intensity at the same point 
(the field source is considered to be at the origin of a 
coordinate system in the plane ξ = 0), x is the depth of the 
turbulent layer,  
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The latter ones (when considering an equivalent thin lens 
with the focal length F and area Σ = πR2) are expressed in 
the phase approximation as follows: 
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ρ
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where k is the radiation wave number, and S(x, ρ) describes 
the wave phase fluctuations at the aperture of the optical 
system (in the plane ξ = x) at the point ρ. The cross 
correlation between random vectors ρ

c
 and ρ

F
 is 
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where angular brackets mean averaging over ensemble of 
random function n

1
(ξ, r) values. Different optical cases 

(i.e., correction using auxiliary source, when the 
corrected and the reference beams are counter directed, 
and the one using radiation reflected from the mirror or 
an object) from the viewpoint of correlation K calculation 
differ only in analytical expressions for S(x, ρ). We use 
for phase fluctuations the approximation of smooth 
perturbation method2 and assume the corrected beam to 
be Gaussian with the parameters a and f. When averaging 
Eq. (4) over the refractive index fluctuations we make 
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use of the fact that no correlation exists between local 
and integral random variables.2 Further we use  
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) is spectral density of the refractive index 

fluctuations. To simplify calculations, we replace physical 
aperture of the optical system by Gaussian one 
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We also assume that average intensity <Ι(ξ, r)> and 
spectrum Φ

n
(κ, ξ) are isotropic and use the average intensity 

in the form 
 

<I(ξ, ρ)> = 
a2

a 2
eff

(x)
 exp [– r2 / a 2

eff
(ξ)] , (5) 

 
where beam's effective size is

 
 

 

a 2
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(ξ) = a2 [(1 – ξ / f)2 + Ω–2 + Ω–2 (12 Ds
 (2 a))6/5] , 

 
Ω = ka2/ξ , and D

s
(2a) is the structure function of phase. 

Integrals in Eq. (4) will be calculated using the 
spectrum 
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which allows for deviation from the power law in the 
region of outer turbulence scale κ–1

0
. Consider the most 

interesting case of large receiving apertures (kR2
0
 >> x). 

For the path with homogeneous turbulence (C2
n
(ξ) = C2

n
) 

computed values of K are presented in Table I. We have 
also computed correlations for the case when reflected 
radiation is used.1 

Consider the control algorithm for correcting for the 
beam's random displacements by measuring displacements 
of its image. It can be taken in the form of the signal 
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where α is a feedback coefficient chosen so that the 
functional 
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is minimum. It also includes the sign of correlation 
<ρ

c 
ρ

F
>. The value of functional (7) describes residual 

distortion. As Table I shows, the variance of permanent 

distortions caused by beam's random displacement comes 
to only 15–25% of the one without a correction. 

Since any actuator in a feedback loop (including the 
adaptive system correcting for the tilt of the phase front) 
has some time constant τ, the value of correlation K 
differs from the one computed by Eq. (4), and in the 
general case it is a function of τ 
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It can be shown that the maximum value of ⏐K⏐ is reached 
when 2R2

0
 = a2. There we have 
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As seen from Eq. (9), an essentially high correction 
efficiency can be reached if τ < a/ν, where a is the initial 
size of the beam and v is the average wind velocity. 

It should be noted that this way of correction is most 
efficient up to distances where the condition 
 
a < (1.45 k2 C2

n
 x)–3/5 

 

is fulfilled.  
The reduction of the average beam size in the plane 

of observation occurring due to such a correction causes 
relative increase in the incident field intensity. In some 
cases this simplest correction algorithm can be 
successfully used instead of the full phase correction 
(e.g., in the systems which need to minimize the beam's 
random fluctuations as a whole to random low–frequency 
refraction) 

 
2. COMPARATIVE CHARACTERISTICS OF THE 

CORRECTION ALGORITHMS (1980) 
 
An essential step of our investigations into this 

problem was the study of comparative characteristics of 
two correction algorithms, namely, wave front conversion 
(WFC) and phase conjugation (PC). In Ref. 3 the case of 
using a point reference source in the receiving plane is 
described. 

Let the propagation of optical radiation be given by 
the equation 
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and the turbulent medium be confined between the 
transmission plane x = x

0
 and the receiving one x = x

1
. The 

field in the receiving plane may be presented as the 
expansion 
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where G is Green's function for the equation conjugated 
with Eq. (10). 

Let us consider residual distortions of optical radiation in 
the receiving plane with the correction based on 
"measurement" of field fluctuations of the reference source 
(beacon) placed in the plane x = x

1
 at a point ρ = ρ

b 
. The 

WFC algorithm introduces predistortion into the initial field  
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U0(ρ)c = U0(ρ) G*(x1, ρb; x0, ρ) . (12) 
 

using the field of a reference source. As a result of this 
correction, one can provide focusing of a plane wave 
(U0(ρ) = 1) at the beacon point 
 

  

2 *
1  c 1 1 0 1 1 0 1b  b(x , ) = d G(x , ; x , )G (x , ; x , )= ( ). U ρ ρ δ∫ ∫ρ ρ ρ ρ ρ

 

Therefore, the WFC algorithm corrects the field (11) 
to the reference wave. 

However, the use of the WFC algorithm in some cases 
faces certain difficulties. Adaptive systems operating 
according to the PC algorithm find more wide application 
when forming optical radiation propagating through the 
turbulent atmosphere. 

The PC algorithm suggests correction of the optical 
wave distortions caused by random medium 
inhomogeneities. It is used to provide an optical system 
with the diffraction limited performances. To estimate the 
quality of this correction, let us examine the behavior of 
distribution moments of the intensity of the corrected field. 

The PC algorithms introduce the predistortions into 
the initial distribution of the field which in contrast to 
Eq. (12) allow only for the reference spherical wave phase 
fluctuations 
 

U0(ρ)c = U0(ρ) G*(x1, ρb; x, ρ)/G*
0(x1, ρb; x, ρ) , (13) 

 

where G*0 satisfies homogeneous (ε1 = 0) equation (10). Let 

us compute distribution of average intensity and variance of 
the intensity fluctuations of the corrected field. The initial 
field is assumed to be a Gaussian beam 
 

U0(ρ) = exp (– ρ2 / 2 a2). 
 

The distribution of the average intensity of the field 
corrected according to the PC algorithm is given as follows3 
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where for power Kolmogorov spectrum of the refractive 
index fluctuations the structural function takes the form 
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(C2
n is the structural parameter of the refractive index). 

The vacuum intensity distribution within the beam is 
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–3/5 is field's coherence 

length. 

In the case of wide optical beams (Ω > 1), we have 
from Eq. (14) 

<I(x1, r)>c ≈ q Ω 
exp (– q v2/ [q/Ω(1 + Ω2) + 4 γ])

q/Ω(1 + Ω2) + 4 γ
 , (16) 

 

where γ ≈ 1. Therefore, the distribution of average intensity 
after correction practically coincides with the vacuum one 

while qΩ >> 1, this condition for sufficiently wide beams 

(Ω >> 1) can be satisfied even for "strong" fluctuations 
(q < 1). 

Consider now the intensity fluctuations of a corrected 
field. The value of variance σ2

c can be taken as the intensity 

standard for residual fluctuations. For "weak" fluctuations 

(q >> 1, q > Ω) σ2
c ∼ (q/Ω)2 << 1, i.e., fluctuations are fully 

suppressed. As fluctuations increase, i.e., when qΩ > 1 but 
q < Ω, σ2

c ∼ 0.13 (q/Ω)1/6 r2. Finally, for "strong" 

fluctuations when qΩ < 1, no correction is practically 
performed. 

In conclusion of this section it may be said that PC 
algorithm using the point reference source is rather 
efficient: it reproduces quite well the distribution of average 
intensity and essentially suppresses intensity fluctuations in 
the transmitted radiation. In narrow beams applications the 
PC algorithm can use plane wave or a wide beam as a 
reference wave. 

 
3. CORRECTION FOR RANDOM ANGULAR 

DISPLACEMENTS OF OPTICAL BEAMS (1981) 
 

This section is devoted to correction4 for random tilts 

of the wave front of a wide (Ω >>  1) optical beam. As a 
result of application of the PC algorithm we get for 
corrected field in the x1 plane 
 

Uc(x1, ρ)=⌡⌠ ⌡⌠ d2ρ1U0(ρ1)G(x1, ρ; x0, ρ1)exp (– i α ρ1), (17) 

 

where G is Green's function and α is the vector 
characterizing the random tilt of the phase front of a 
reference spherical wave in the x0 plane within the limits of 

transmitting aperture. The tilt correction is introduced in 
the form of predistortions of the initial distribution U0(ρ) 

in the x0 plane. 

Efficiency of the correction (17) apparently depends on 
the algorithm of determining the vector α. This can be done 
using series expansion of the reference phase over Zernike 
polynomials but this way is rather complicated. More 
simple algorithm for determining α is provided by 
measuring the vector of displacements of the gravity center 
of the reference source image formed by a lens with the 
focal length F and aperture W(ρ): 

ρF = – 
F
κ
 
⌡⌠ ⌡⌠ d2ρ ∇ S(ρ) W(ρ)

⌡⌠ ⌡⌠ d2ρ W(ρ)
 . (18) 

 

Being related to the focal length, ρF gives a quantitative 

characteristic of the phase front rotation. 
For further calculations we rewrite4 the coherence 

function of the corrected field (17) in the form 

Γc(x1, ρ1, ρ2) = ⌡⌠ ⌡⌠ d4r1,2 U0(r1) U*
0(r2) × 

 

× <G(x1, ρ1; x0, r1) G*(x1, ρ2; x0, r2) exp (– i α (r1 – r2)) >. (19 ) 
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In calculations we use phase approximation2 for the Green's 
function 
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is Green's function for empty space. For a Gaussian random 
field S(x1, ρ1; x0, r1) we have 
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In earlier calculations5 of the average value in Eq. (19) it 
was assumed that no correlation between random tilts of the 
whole wave front α (within aperture limits) and high–
frequency phase fluctuations S(r) – αr occurs. Based on 
Fried's approximation, we obtained for a Gaussian beam 
 

U0(r) = exp [– r2 (1/2 a2 + i k/z f)] 

the following expression:  
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where Ω = ka2/(x1 – x0), qF = kr2
0/F . Here a0 is the 

aperture size of a device that measures random tilt of the 
wave front α according to algorithm (18). It can be shown 
from Eq. (21) that a proper choice of a0 makes the 

distribution <I
c(x1, r)> close to the vacuum one. The 

optimum value of a0 is about 2 r0. This adaptive correction 

is efficient when qΩ >>  1. 
For experimental verification of these results4 we used 

the optical arrangement presented in Fig. 2. The measurer 5 
was an optoelectronic device measuring the gravity center 
displacements of the reference beam image. The signal from it 
passed to a ceramic deflector 6 changing the direction of beam 
propagation. We used collimated (a = 1 cm) laser beam, the 
atmospheric propagation distance was 130 m 1.5 m above 
surface. The distribution of average beam intensity was 
recorded on a film. Figure 3 shows distribution cross sections 
of the average beam intensity with (1) and without (2) 
correction. Increase of axial intensity in the corrected 
case is manifest. 

 
FIG. 2. Block diagram of the optical device: 1 and 2 – 
laser sources of reference and initial beams, 3 – lens,  
4 – photorecorder, 5 – measurer of fluctuations of 
incidence angles, 6 – optical beam deflector, and 7 – 
mirror reflector. 

 
FIG. 3. Comparison of the distributions of average 
intensity of corrected (1) field and of the field without 
any correction (2). 

 

Correction mechanism may be modified by using 
reflected radiation as a reference one. For this purpose we 
have used a plane mirror 7. 

Let us now discuss again correlation between high–
frequency phase fluctuations and the tilt of the wave front. 
As a result of correction for tilts the wave phase can be 
written as  
 

S(r) – α r. 
 

Its structure function can be expressed in terms of its 
components as follows: 
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where angular brackets mean averaging over an ensemble of 

random function values. If κma0 >>  1, we have for 

Kolmogorov turbulence 
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6, 2; – 
r2
1

2 a2
0

 r1 (r1 – r2 cos (r1, r2)) + 

 



V.P. Lukin Vol. 8, No. 3 /December 1995/ Atmos. Oceanic Opt. 157 

 

+ 1F1 ⎝
⎛

⎠
⎞1

6, 2; – 
r2
2

2 a2
0

 r2 (r2 – r1 cos (r1, r2))
⎭
⎬
⎫ 

 

 .  (23) 

 

Main peculiarity of Ds(r1, r2) in contrast to Eq. (21) is its 

positive definiteness for any r1 and r2 , which provides 

physically correct results for any relation between a and r0 . 

Analysis of the average intensity distribution4 accounting 
for correlation between the tilts and high–frequency phase 

fluctuations shows that for a >>  r0 
 

<Ic(x1, r)> ≈ <I(x1, r)> , 
 

i.e., correction only for random wave front tilts does not 
lead to an increase in the average intensity. 

 
4. RECIPROCITY PRINCIPLE AND ADAPTIVE 

CONTROL OF OPTICAL RADIATION PARAMETERS 
(1982) 

 
In this section we propose some simple applications of 

the adaptive control of beam parameters, based on the 
reciprocity principle for propagation of radiation in an 
inhomogeneous medium. Information about inhomogeneities 
distribution along the propagation path is derived from the 
intensity distribution in the plane of the object image.6 

The field of an optical beam at the point (L, R) of an 
inhomogeneous medium can be written in the form 
 

Ub(L, R) = ⌡⌠ ⌡⌠ d2ρ U0(ρ) G(L, R; 0, ρ) , (24) 

 

where G(...) is Green's function or the spherical wave field. 
Let the point object be placed at that point (L, R), whereas 
optical system is placed in the plane x = 0. The field of 
radiation coming from this object to the plane x = – l is 
 

US(– l, r)=⌡⌠ ⌡⌠ d2ρ G(L,R; 0,ρ) A(ρ) exp(iS(ρ)) G0(0, ρ; – l, r). 

(25) 
 

Here A(ρ) is the amplitude transmittance of an optical 
receiver, S(ρ) is the phase shift introduced by the optical 
system, and G0 is Green's function for a homogeneous 

medium. Owing to the reciprocity principle6,7 we have 
 

G(x0, ρ0; x, ρ) = G(x, ρ; x0, ρ0) . 
 

It is seen from Eqs. (24) and (25) that for 
 

U0(ρ) =
k

2π i l A(ρ) exp (i S(ρ)) exp( )i 
k r2

2 l  – i k 
r r
l  

 (26) 
 

the field of a coherent light beam at the point (L, R) 
coincides with that of radiation from a point source at the 
point (– l, r) accurate to a constant factor 
 

Ub(L, R) = l US(– l, r) . (27) 
 

This relation is an exact corollary of the reciprocity principle 
and it assumes that the field of radiation from a point source 
placed at the point (L, R) of an inhomogeneous medium, 
passed through a window with the transmittance 
A(ρ)exp(iS(ρ)) and observed at the point (– l, r), coincides 
with the field of radiation from the same source but placed at 
the point (–l, r), passed along this path back and observed at 
the point (L, R). 

 

Below we consider some applications of this principle 
to control beam parameters in order to maximize the 
radiation intensity at some remote point.6 

 
Choice of a proper moment for delivering a radiation 

pulse 
 
To solve this problem we must record intensity 

distribution of radiation from a point beacon at the point  
(– l, r) beyond the optical system with the transmittance 
A(ρ)exp(iS(ρ)) determined from Eq. (26), and to deliver the 
laser pulse through the same optical system at the moment 
when the beacon radiation intensity is spiking. Obviously the 
pulse travel time must not exceed the delay time of the 
amplitude–phase distribution. Besides, if a collimated beam is 
used, observation must be done in the focal plane of optical 
system, whereas for a focused beam it must be done in the 
plane of an object image. 

 
Aiming of a beam axis at a point object 

 
A correct aiming of a beam axis should bring 

Ib(L, R) = UbU
*
b to a maximum. Change of direction is 

equivalent to introduction of a phase shift to the initial 
field distribution, that is, 
 

U0(ρ) = U0 exp (i k γ ρ), 
 

where γ is the vector of the beam axis tilt. Given the 
distance between the observation and the receiving aperture 
planes (– l), we choose the transmittance so that 
 

A(ρ) exp (i S(ρ)) = C U0 exp (i k ρ2/2 l). (28) 
 

Under conditions (28) equation (26) is fulfilled when  
γ = –r/l. Consequently, the best directions for 
maximizing intensity at an object will correspond to 
vectors r along which the intensity of radiation coming 
from an object is maximum. Therefore, when aiming a 
continuous radiation at an object, the beam's axis must 
be directed to the brightest point of the intensity 
distribution. This method automatically tracks the object 
motion. 

 
Aiming and focusing of a beam of coherent radiation 

 
In this case we have to make the best choice of the 

beam's axis tilt and focal length based on the intensity 
distribution in some region beyond the optical system. 
The initial field distribution is of the form 
 
U0(ρ) = U0 exp (i k γ ρ – i k ρ2/2 F) , (29) 

 
where the axis tilt vector γ and beam's focal length F are to 
be controlled. The condition (26) should be fulfilled if 
 

γ = – r/l ,  1/F = 1/f – 1/l  (30) 
 
which in turn gives Ib(L, R) ∼ l2Is(– l, r), i.e., intensity 

of radiation from a point source at the point (– l, r) 
beyond the optical system is proportional to the intensity 
of the beam whose axis tilt vector γ and focal length F 
are determined from Eq. (30). 

Therefore, the best beam's focal length F and the 
axis tilt vector γ, that is, the point (– l, r) where the 
value of l2I(– l, r) is brought at maximum, are 
determined from Eq. (30). 
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It is known that in the process of an object detection, 
the intensity of reflected signal fluctuates as squared 
intensity at an object, and consequently the maximum of 
received signal brings also the maximum to the intensity at 
the object. That is why all the above mentioned methods of 
controlling the beam parameters can be performed with the 
use of reflected radiation.6 

 
5. QUASIMODE CORRECTION OF AN IMAGE 

PASSED THROUGH THE RANDOMLY 
INHOMOGENEOUS MEDIUM (1982) 

 
This section8 is devoted to comparison of field 

characteristics obtained using mode correction (with 
correction of two dominant modes) or by correction based 
on analysis of distribution moments of the intensity in the 
image plane. It can be applied to either aiming of an optical 
beam through the atmosphere with the use of a reference 
source or improving quality of an image of a star built up 
with a telescope. 

Let the optical wave with distorted front be incident 
on the telescope aperture with radius Ra . To provide the 

telescope with the diffraction–limited performances one 
should complete the measured wave front to a plane one. 
We consider here the phase–conjugated mode correction 
algorithm restricting ourselves to Y and Z axes correction of 
random tilts of the phase front. As a result of such a 
correction, the wave phase at the telescope aperture takes 
the form 
 

Φ
c(r) = Φ(r) – ∑

j=2

3

 aj Fj (r/Ra) , (31) 

 

where F2(r/Ra) = 2y/Ra and F3(r/Ra) = 2z/Ra are 

dominant Zernike modes, and 
 

aj = 
1

R2
a

 ⌡⌠ ⌡⌠ 

–∞  

+∞

d2r Φ(r) Fj (r / Ra) W (r / Ra) . 

 

Then the distribution of average intensity in the telescope 
focal plane (x = f) is as follows: 
 

<If (ρ)> = 
k
2

4π2 f 2
 
⌡⌠

 

 ⌡⌠
 

 
d4ρ1,2 W (ρ1/Ra) W (ρ2/Ra) × 

× exp 
⎩
⎨
⎧

⎭
⎬
⎫

– i k ρ 
(ρ1 – ρ2)

f  <exp {i [Φ(ρ1) – Φ(ρ2)] – 

– i ∑
j=2

3

 aj [Fj (ρ1/Ra) – Fj (ρ2/Ra)]}> . (32) 

 

For a random Gaussian field Φ(ρ) the averaging in the 
right–hand side of Eq. (32) results in 
 

<⋅⋅⋅> = exp

⎩⎪
⎨
⎪⎧

 

 

– 
1
2 D

Φ
(ρ1 – ρ2) + 2 

<a2
2>

R2
a

 (ρ1 – ρ2)
2 + <a2 a8> × 

× 
⎣
⎡

⎦
⎤6 8

R4
a

 (ρ4
1 + ρ4

2) – ρ1 ρ2 (ρ
2
1 + ρ2

2) – 
4 8

R2
a

 (ρ1 – ρ2)
2

⎭⎪
⎬
⎪⎫
 

 

, (33) 

where, for Kolmogorov turbulence,  
 

D
Φ
 (ρ1 – ρ2) = 6.88 (⏐ρ1 – ρ2⏐/r0)

5/3 ,  

<a2
2> = <a2

3> = 1.42 (Ra/r0)
5/3 ,  

<a2 a8> = <a3 a7> = – 0.045 (Ra/r0)
5/3 , 

(r0 is the radius of coherence). 

Recently5 the optical transfer function <τ(ρ)> of a 
telescope looking through the atmosphere was analyzed in 
the case of no correlation between corrected tilts and high–
frequency phase fluctuations. In our designations 
(<a2 a8> = 0) it corresponds to 
 

<τ(ρ)>=K0(ρ)exp {– 3.44 (ρ/r0)
5/3+2.86 R–1/3

a ρ2 r–5/3
0 } , (34) 

 

where K0(ρ) is the optical transfer function of the telescope 

in vacuum. It is known that the expression (34) gives 
physically correct results but only for weak turbulence 
(r0 > Ra/2). 

The optical transfer function can be written using 
Eq. (33) with regard for the correlation <a2 a8>. Thus, for 

Gaussian effective aperture of the telescope 
W(ρ) = exp(–ρ2/2R2

a) we obtain 
 

<τ(ρ)> = 
⎣
⎡

⎦
⎤1 + 2.41 

r2

R1/3
a  r5/3

0

–1

 exp{– 3.44 (ρ / r0)
5/3 + 

+
 
3.35 ρ2 R–1/3

a  r–5/3
0  – 0.24 ρ4 R–7/3

a  r–5/3
0 } . (35) 

 

Of course, the account for a greater number of 
expansion modes in Eq. (31) when making correction makes 
an optical system closer to a diffraction limited one. 
Nevertheless, mode correction requires the phase Φ(ρ) to be 
measured over the entire aperture. 

To simplify this procedure we restrict ourselves when 
making the lowest order correction to analysis of 
distribution of moments of the intensity in the plane of 
image of an auxiliary aperture Σ (Fig. 1). In particular, the 
first moment determines the position of the center of gravity 
of image and specifies angle of the wave front arrival. Using 
the relation7 
 

α = – 
1
k Σ ⌡⌠ ⌡⌠ 

Σ

d2ρ ∇ρ Φ(ρ) , (36) 

 

we obtain for the corrected phase the following expression 
 

Φc(ρ) = Φ(ρ) + α ρ k . 
 

In Ref. 8 we have obtained an expression for the 
average intensity distribution of an image formed in a 
turbulent atmosphere 
 

<If (ρ)> = 
k
2

4π2 f 2
 
⌡⌠

 

 ⌡⌠
 

 
d4ρ1,2 W (ρ1/Ra) W (ρ2/Ra) × 

× exp
⎩
⎨
⎧

⎭
⎬
⎫

– i k ρ 
(ρ1 – ρ2)

f  exp
⎩⎪
⎨
⎪⎧ 

 
– 3.44 ⏐ρ1 – ρ2⏐5/3 r–5/3

0  + 

+
 
2.66

 
⏐ρ1 – ρ2⏐2 R–1/3 r–5/3

0  – 5.73 R–1/3 r–5/3
0  × 

× 
⎣
⎡

⎦
⎤ρ1 (ρ1 – ρ2)

(ρ1 / R + 1)1/3 – 
ρ2 (ρ1 – ρ2)

(ρ2 / R + 1)1/3

⎭⎪
⎬
⎪⎫ 

 
 . (37) 

 

Analysis of this result shows that a proper choice of the 
tracking aperture R made using such a "quasimode" 
correction provides the residual distortions to be of the same 
value as in the case of correction of only two dominating 
modes. Optimum value of the aperture R depends on the 
telescope aperture Ra and on r0. 

This algorithm can be developed by determining the 
instant focus of a received phase front and provides that 
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compensation for defocusing is done. The instant focus can 
be determined by evaluating higher order moments of image 
intensity distribution. 

Correction algorithm described above is rather simple 
and can be recommended to improve the quality of an image 
constructed by telescope. 

In the same paper8 we have presented evaluations of a 
required frequency band of a wave front sensor to provide 
adaptive mode correction. 

 
6. ADAPTIVE IMAGE CORRECTION USING A POINT 

REFERENCE SOURCE (1982) 
 

Here we investigate how to improve image of an 
extended object formed with a coherent light through the 
atmospheric layer, with the use of an adaptive correction.9 To 
do this, a phase conjugation algorithm corrections is used 
whereas information on the distribution of turbulent medium 
inhomogeneities along the path of beam propagation is 
obtained from measurements of the phase of the wave coming 
from a reference source. 

A reference source, interpreted as an object with known 
amplitude–phase distribution placed at a known distance, can 
be formed directly at the surface of an object analyzed within 
optical system. It may also be an infinitely far light source (a 
star) or the one placed between the object and the telescope.9 

Let us consider the following experiment (Fig. 4): when 
an extended object is placed in the plane xobj, a point 

reference source – in the plane xref and a receiving telescope – 

in the plane x0. The telescope will be described with an 

equivalent lens of the aperture W(ρ) contributing to the phase 
with the term exp(–ikρ2/2f), where f is the focal length of 
the telescope. Since the reference source is assumed to be a 
point source emitting coherent light the wave phase in the 
plane x0 can be expressed as 
 

Sref(x0, ρ) = k ρ2/2 (xref – x0) + S(x0, ρ; xref, 0) , 
 

where S is the random phase of a spherical wave induced by 
turbulence when it propagates from xref to x0. 

 

 
FIG. 4. Optical arrangement of an experiment involving 
an extended object, reference source, telescope, and the 
image plane. 
 

In the case of a vertical path in order to provide 
maximum efficiency the reference source must be placed 
above the effective layer of a turbulent atmosphere. 

To correct for distortions, we use an algorithm of 
phase conjugation. Then the corrected field in the image 
plane x obj'  takes the form 
 

Uim(x obj' , ρ)=⌡⌠ ⌡⌠ d2ρ1d
2r1Uobj(r1)W(ρ1) exp(– i kr21 /2 f) × 

 

×
 
G0(x obj' ,ρ;x0,ρ1)G(x0,ρ1;xobj,r1)exp(–i S(x0, ρ1; xref,0)), (38) 

 

where Uobj(ρ1) is the object's field distribution, r1 is the 

variable of the integration over the object, and ρ1 is the 

variable of integration over telescope aperture. We use in 
our calculations the following expression for the structure 
function of phase: 
 

Ds(x,ρ;x′,ρ′)=2.91k2 
⌡⌠

x'

x
 

 
dξ C2

n(ξ) 
(ξ–x')
(x– x') r +

(ξ–x)
(x–x') r'

5/3

. (39) 

 

The structure characteristic of the refractive index C2
n in 

Eq. (39) depends on the variable of integration over the path. 
The optical transfer function for the system 

"telescope–atmosphere" is introduced by 
 

<I(f, ρ)> = 
k
2

4π2 f 2
 ⌡⌠ ⌡⌠ d2r <τ(r)> exp (– i k r ρ) . (40) 

 

Here <I(f, ρ)> is the average intensity distribution in the 
image plane. Calculations for a Gaussian aperture 
(W(ρ) = exp(–ρ2/2R2)) give 
 

<τ(r)> = π R2 
Ω 2

obj

(1 + Ω 2
obj + ΩR Ωobj + 4 Ωobj/Ωa)

 × 

 

× exp

⎩
⎨
⎧

 

 

– 
r2

4 R2

⎣
⎢
⎡

 

 

1 + 
4 Ω

R

Ωeff
 + 

Ω
R Ωobj(1 + Ωobj/Ωa)

(1 + 4 Ωobj/Ωa + Ω2
obj)

 + 

 

+
Ω2

R (1+ 4 Ωobj/Ωa )
2

(1+4 Ωobj/Ωa+ Ω2
obj) (1 +4 Ωobj/Ωa+ Ω2

obj+ΩR Ωobj) ⎦
⎥
⎤
 

 ⎭
⎬
⎫

 

 

 , (41) 

 

where  

Ωa = 
k r2

a

xobj – x0
 ;  Ωobj = 

k a2
obj

(xobj – x0)
 ; 

 

ΩR = 
k R2

xobj – x0
 ;  Ωeff = 

k r2
eff

(xobj – x0)
 ; 

 

ra

 

= 
xobj

xref – x0
 (2.68 k2 ⌡⌠

x0

xref

 d ξ C2
n(ξ))–3/5 , (42) 

 

aobj is the object size; ra is the size of isoplanarity zone of the 

atmosphere; and, reff is the effective coherence length 

determined by the atmospheric inhomogeneities above the 
reference source. By definition (Eq. (42)) the isoplanarity zone 
is seen in the object plane at the same angle as the coherence 
length of the effective atmospheric layer is seen through this 
layer. 

Therefore, the optical transfer function (41) depends 
essentially on the ratio of the telescope size and the 
effective coherence length (Ω

R/Ωeff = R2/r2
eff) and on the 

ratio of the dimensions of an object and isoplanarity zone 
(Ωobj/Ωa = a 2

obj/r2
a) as well as on their combination. 
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With the help of introduced optical transfer function one 
can calculate the resolution of the whole "telescope–
atmosphere" optical system 
 

ℜ = ⌡⌠ ⌡⌠ d2 κ <τ(κ)> , (43) 

 

where κ = kr/f is a spatial frequency. From Eqs. (41) and 

(43) for the case Ωobj >> ΩR , Ωobj >> 1, and Ωeff >> ΩR we 

obtain 
 

ℜ = 2πk2/f 2 [1/R2 + 4/r2
a + 4/r2

eff]. (44) 
 

So, the resolution is determined by the minimum value 
among the set of telescope size R, effective coherence length 
reff, and isoplanarity length ra. Given the telescope size and 

the object altitude which determines the isoplanarity length 
ra, one can increase reff by choosing the position xref of the 

reference source. If the reference source is at the object we 
obtain infinite value of reff, and 
 

ℜ = 2πk2/f 2 (1/R2 + 4/r2
a) .  

 

In this case resolution is limited by the size of the 
isoplanarity zone.9 

In conclusion of this section let us note that the 
efficiency of an atmospheric adaptive optical system using a 
reference source can be significantly increased. Altitude of 
the reference source position is determined by both the 
shape of C2

n profile along the path of propagation and the 

equation of admissible residual distortions still providing 
image formation. Optical system provides aberrationless 
image of the isoplanar zone only. Proper choice of a 
reference source position can bring the resolution of the 
optical system to an ultimate value determined by the 
length of isoplanarity zone. Therefore altitude values for 
which r

a > R provide a diffraction limited resolution. 

 
7. DYNAMIC CHARACTERISTICS OF THE ADAPTIVE 

OPTICAL SYSTEMS (1984) 
 

As known, the adaptive optical system being a system 
with a feedback has a finite response time and, as a result, a 
limited frequency band pass. In this section we investigate10 
the influence of a delay time on the efficiency of an adaptive 
system operation. To evaluate the quality of correction, we use 
Strehl parameter (i.e., relative change in axial intensity). 

If the transition processes in a feedback loop of an 
adaptive system are ignored, it can be considered as a system 
with a constant delay time τ which can be interpreted as a 
response time of an adaptive circuit. This means that because 
of this delay time we make a control of the adaptive system 
based on the preceding measurements of the phase of a 
reference source field. Thus, a problem arises on estimating an 
admissible delay time τ and corresponding frequency pass band 
Δf of a feedback loop of the whole adaptive system. 

Using the phase approximation of a Huygens–Kirchhoff 
method, we can write the average axial intensity of the 
corrected field as follows:  

<I(0, τ)> = 
1

λ2 l2
 
⌡⌠

 

 ⌡⌠
 

 
d4ρ1,2 A(ρ1) A*(ρ2) exp⎝

⎛
⎠
⎞– i k 

(ρ2
1 – ρ2

2)

2 l × 

× <exp {i [S(0, ρ1; l, 0; t + τ) – S(0, ρ2; l, 0; t + τ)] – 
 

–
 
i [S(0, ρ1; l, 0; t) – S(0, ρ2; l, 0; t)]}> . (45) 

 

Here A(ρ) is the initial distribution of field, l is the 
distance passed by the wave in a randomly inhomogeneous 
medium, t is current time, and τ is the constant delay time. 
Everywhere below we shall use brief notation S(ρ, t) 
instead of S(0, ρ; l, 0; t) for the phase fluctuations of a 
spherical wave. 

Using the hypothesis of frozen phase fluctuations, i.e., 
 

S(ρ, t + τ) = S(ρ + v τ, t) , 
 

(v is the vector of wind velocity), after some 
calculations10,11 we obtain 
 

<I(0, τ)> = λ–2 l–2 
⌡⌠

 

 ⌡⌠
 

 
d4ρ1,2 A(ρ1) A*(ρ2) × 

 

× exp⎝
⎛

⎠
⎞– i k 

(ρ2
1 – ρ2

2)

2 l  – 12 <a2
4> 

τ2 ν2

R4  (ρ1 – r2)
2  , (46) 

 

where 
 

<a2
4> = 0.074 (R / r0)

5/3 , 
 

for Kolmogorov turbulence R is the radius of the phase 
expansion circle, namely, radius of the receiving aperture of 
a telescope or an optical beam. For example, when focusing 
the beam through the turbulent atmosphere11 we have 
 

<I(0, τ)> = Ω2 (1 + 3.52 τ2 ν2 r–5/3
0  a–1/3)–1 . 

The correction will be efficient if  

τ <<  (r0/ν) (a/r0)
1/6 , (47) 

where r0 is radius of coherence for a spherical wave, 

Ω
 
= k a2/l, and ν = ⏐v⏐. 

A stepwise control function with the delay time τ 
corresponds to a frequency spectrum of the form 
sin(πfτ)/(πfτ). So, if we take the first zero of sinx/x 
function for the frequency band width then for the 
frequency band width of the feedback loop we obtain 
 

Δf ~ 1/τ >> (ν/r0) (r0/a)1/6 .. (48) 
 

It should be noted that in addition to the system with a 
constant delay time, a system can be proposed in which a 
correcting phase at the moment t + τ is formed as the 
forecast  
 

S^(ρ, t + τ) = S(ρ, t) + ∇
ρ
 S(ρ) v τ . (49) 

 
An acceptable delay time τ1 is then given by  

τ1 >> (r0/ν) (a/r0)
7/12 . (50) 

 

A comparison of Eqs. (47) and (50) shows that if a 
correction uses measurements not only of the phase but of 

its derivatives (
∂S
∂y , 

∂S
∂z) , it remains efficient for much 

longer delay time τ1 : 

τ1

 
/ τ = (a/r0)

5/12 . (51) 
 

Eq. (51) shows that adaptation based on algorithm (49) 
admits much longer delay time. The stronger are the phase 
distortions (i.e., the greater is the ratio a/r0), the longer is 

the time gain in comparison with usual adaptation scheme. 
The correction method in accordance with Eq. (49) is 

rather practicable because the phase meters usually measure 
not the phase itself but its derivative or phase difference. 
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8. FORECASTING ADAPTIVE SYSTEMS (1985) 
 

The next stage in the development of the theory of 
atmospheric adaptive optical systems was introduction11 
of a new class of forecasting systems. 

When comparing different dynamic modes11 of operation 
of adaptive optical systems, we deal with the problem on how 
to extrapolate currently measured phase to subsequent time 
moments. It can be however treated as the problem on 
forecasting random optical wave phase at the moment t + τ 
based on measurements performed at the moment t. 

Let us compare three different methods of forecasting. 
We will use the symbol ^ to indicate the forecasted value. 

1) The forecast of random value S(r, t + τ) from its 
average. In fact, such an adaptive system does not provide 

any correction S^(r,
 
t + τ) = <S(r, t)> = m . As a rule, the 

average m equals zero. 
2) The forecast based on the last (current) measured 

value. This method corresponds to adaptive correction with 

a constant delay time S^(r,
 
t + τ) = S(r, t) . 

S^(r,
 
t + τ) = S(r, t) . 
3) The statistical forecast based on a set of previously 

measured values S^(r,
 
t + τ) = b

S(τ) S(r, t) . Here bS(τ) is 

the normalized time correlation function of the phase 
fluctuations. 

The quality of the forecast will be determined from 
statistical moments of deviations of the forecasted variable 
from its true value. For example, the variance3 
 

<e2>
 
= <[S(r, t + τ) – S^(r, t + τ)]2>  

 

will determine the quality of the field average forecast. For 
the three methods described above we have respectively 
 

<e2>1 = s2
S , 

 

<e2>2 = 2 s2
S [1 – bS(τ)] = DS(v τ) , 

 

<e2>3 = σ2
S [1 – b2

S(τ)] , 
 

where σ2
S is the variance of phase fluctuations and Ds(v, τ) is 

the structure phase function. Figure 5 shows, for a 
comparison, the dependence of the refractive forecast variance 
<e2>/σ2

S on the delay time τ. We see that the error of 

forecasting the field average3,11 depends both on the variance 
and time scale of phase fluctuations. Obviously the third 
(statistical) method provides better correction in comparison 
with the other two at any τ. 
 

 
 

FIG. 5. Relative variance of the forecast: 1) <e2>1/σ2
S 

(1st forecast method), 2) <e2>2/σ2
S , and 3) <e2>3/σ2

S . 

As to the correction of the average intensity 
distribution,3 its efficiency will be determined by the 
following value: 
 

<β2> = <{[S(r1, t + τ) – S^(r1, t + τ)] – [S(r2, t + τ) – 

– S^(r2, t + τ)]}2> . 
 

Once the variances for all three correction methods are 
calculated we obtain 
 

<β2>1 = DS(⏐r1 – r2⏐) ,  <β2>2 = 2DS(⏐r1 – r2⏐) – 2B
ΔS(τ) ;   

 

<β2>3

 
= DS(⏐r1 – r2⏐) (1 + b2

S(τ)) – 2bS(τ) BDS(τ) . 
 

It is seen from these expressions that in order to evaluate 
correction errors for different forecasts one should be able to 
calculate the structure function of phase and time 
correlation function of the phase difference fluctuations 

BDS(τ) = 
1
2

 
D

S(⏐(r1 – r2) + vτ⏐) + 
1
2 DS(⏐(r1 – r2) – vτ⏐) – 

 

–
 
DS(⏐vτ⏐) . 

 

Let us then consider how to forecast the phase 
fluctuations using the expansion of phase over modes. Let 
the aperture be a circle with the radius R, then the wave 
phase can be expanded over polynomials F

j(r/R), 

orthonormal within the circle 

S(r, t)

 

= ∑
j=1

∞

 aj(t) Fj(r/R) , 

 

where aj are the expansion coefficients. Based on this 

expansion obtained from measurements performed at the 
moment t, we can write the statistical forecast for the 
moment t + τ as follows: 
 

S^(r, t + τ)

 

= ∑
j=2

∞

 aj(t) bj(τ) Fj(r/R) , 

 

where bj(τ) are normalized correlation functions. It is easy to 

show that comparatively the efficiency of the third method 
(compared to the second one) will be proportional to  
(1 – bj(τ))–2 for the mode component of the number j = 2, 

3, ... . The greater is the mode number j, the smaller is the 
spatial correlation radius: the largest radii have random phase 
tilts (j = 2, 3), defocusing and astigmatism (j = 4, 5, 6) have 
smaller radii, then coma comes (j = 7, 8), and so on. At a 
fixed τ the efficiency of the mode statistical forecast, being 
proportional to (1 – bj(τ))–2, grows with the increase of j. 

Based on modified atmospheric models, we have 
calculated dynamic parameters of an adaptive ground–based 
telescope.16 We have compared (see Fig. 6) Strehl parameter 
St for different adaptive systems: curves 1 correspond to a 
telescope without a correction, 3 – a system with an constant 
delay time, and 4 – a system using the forecast by Eq. (49). 
Corresponding curves with different values of D/r0 ratio are 

shown in Fig. 6. Curves 2 correspond to asymptotic 

calculation of Strehl parameter11,16 in the systems with S^

(r, t + τ) = S(r, t) according to the formula 
 

St(τ) = St + exp (– DS(vτ)) [1 – St] , 
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where St is Strehl parameter for a system without a 
correction. It is seen from the last expression that St(τ) → 1 
for DS(ντ) → 0 whereas for DS(ντ) → ∞ St(τ) → St, i.e., to 

the parameter characteristic of a system without correction. 
 

 
FIG. 6. Strehl parameter for a ground–based adaptive 
telescope as a function of generalized parameter ντ/R. 
Figures at the curves are explained in the text. 

 
9. MODE CORRECTION FOR TURBULENT 

DISTORTIONS OF THE OPTICAL WAVES (1985) 
 

Creation of a highly sophisticated adaptive optical 
system providing for real time correction of all distortions is 
quite a complicated technical problem. In this connection an 
idea of forming corrected optical wave without adaptive 
mirror seems to be rather fruitful especially at the stage of 
development. 

Thus, in Ref. 12 we have shown how to imitate mode 
correction based on the analysis of phase structure of the 
optical wave passed through a turbulent medium either 
directly or with the help of a corner–cube reflector. Assume 
that all turbulent fluctuations are reduced to the phase 
ones, then for the directly propagated wave we have  
 

U1(r) = exp (i S(r)) , (52) 
 

whereas for the reflected wave that twice passes a medium 
layer (after reflection from a corner–cube reflector) 
 

U2(r) =
 
exp

 
(i S(r) + i S(– r)) . (53) 

 

Calculation of the mutual coherence functions for the fields 
described by Eqs. (52) and (53) using expansion of S(r) 
over orthogonal polynomials gives12 
 

Γ1(r1, r2) = exp {– 3.44(⏐r1 – r2⏐ / r0)
5/3} , (54) 

 

Γ2(r1, r2) = exp {– 0.54 R–7/3 r–5/3
0  [3(r41 + r42) – 4r21 r

2
2]} . (55) 

 

Comparison of Eqs.
 
(54) and (55) shows that the reflected 

field is coherently anisotropic in contrast to the direct one. 
Equation (55) also shows that for a corner reflector of the 

size R >>  r0 the reflected wave restores its coherence during 

the backward propagation almost completely. 
This result can be treated not in terms of the direct 

and reflected waves but as a result of adaptive mode 
correction of phase distortions of the reflected wave. The 
adaptive correction is done by introducing phase 
predistortions into the initial distribution. In this case the 
field, corrected according to phase conjugation method, is 
 

Uc(r) = exp {i S(r) – i Sc(r)} , (56) 
 

where Sc(r) = – S(–r). As a result the field (56) coincides 

with that given by Eq. (53) which assumes the use of a 
corner reflector. Therefore, the use of a corner reflector 
simulates the phase conjugation mode correction method 
with antisymmetric modes being under correction.12 

We have performed experimental verification of this 
analysis. Some results of the coherence measurements are 
presented in Figs. 7 and 8. Pairs of curves 1 and 2 and 3 
and 4 are obtained at different turbulence regimes such that 
a five–fold difference in the coherence radii could be 
observed. Comparison of curves 1 and 2 and 3 and 4 shows 
that mode correction of phase distortions essentially raises 
the coherence of radiation. Figure 8 confirms the result of 
Ref. 12 on a strong coherence anisotropy in the wave where 
antisymmetric modes of phase fluctuations are corrected. 

 

 
 

FIG. 7. Comparison of coherence functions for direct and 
reflected radiation: curves 1 and 3 – direct radiation at 
different turbulence regimes and curves 2 and 4 – the 
same for reflected radiation. 
 

 
 

FIG. 8. Anisotropy of the coherence function for reflected 
radiation: curves 1 and 2 – coherence functions for direct 
radiation and curves 3 and 4 – the same for reflected 
radiation; curves 1 and 3 refer to central spacing of 
observation points whereas curves 2 and 4 refer to the 
symmetric spacing. 

 
Thus the experiments on the mode correction well 

confirm theoretical results. Efficiency of this rather 
complicated optical phase correction can be estimated from 
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comparative measurements of coherence of both direct and 
reflected waves. 

 
10. EFFICIENCY OF A TWO–COLOR ADAPTIVE 

OPTICAL SYSTEM (1978, 1986) 
 

The adaptive optical system as a system with the 
feedback loop closed optically through the atmospheric 
layer uses for its control the data of optical measurements in 
the fields produced by reference sources. This usually 
implies that reference and corrected sources emit at the 
same wavelength. 

However, for some practical applications it is 
worthwhile to use the initial and reference radiation of 
different wavelengths. Such a two–color adaptive system 
was first considered in Ref. 15 where the expression for 
structure function of the phase difference of two spherical 
waves was obtained. 

In this section we investigate the behavior of eikonals 
difference for two optical waves, following Ref. 13. It is 
known that variation of eikonal Θ(ρ, k) at the wavelength λ 
(k = 2π/λ), being equal to S(ρ, k)/k, represents linear 
variation of the optical paths difference. Note that adaptive 
mirrors correct precisely these linear variations but not the 
phase distortions measured in radians. 

To analyze the influence of frequency decorrelation on 
the efficiency of two–color adaptive optical system, let us 
examine statistical parameters of eikonals difference 
fluctuations for two wavelengths λ1 and λ2. In the 

approximation of smooth perturbations method the eikonal 
variations for the plane wave2 are 

Θ(ρ, k) = 
⌡⌠
0

L
 

 
dx 

⌡⌠
 

 ⌡⌠
 

 
d2n (κ, x) eiκρ cos

⎣
⎡

⎦
⎤ k2(L – x)

2 k  
 , (57) 

where L is the distance and d2n(κ, x) is spectral amplitude 
of fluctuations of the refractive index n1(r). It is given by 

formula 
 

n1(r) = ⌡⌠ ⌡⌠ d2n (κ, x) exp (i κ ρ) . 

 

Let us first calculate the variance of eikonals difference (57) 
for wavelengths λ1 and λ2 
 

σ2
ΔΘ

=2π2

⌡⌠
0

L
 

 
dx
⌡⌠
0

∞
 

 
dκ κΦn(κ) 

⎣
⎡

⎦
⎤cos 

k2(L – x)
2 k1

–cos 
k2(L–x)

2 k2

2

 (58) 

for the turbulence spectrum of the form  
 

Φn(κ, x) = 0.033 C2
n(x) (κ2 + k2

0)
–11/6 exp (– κ2 / k2

m) , 
 

where κ0 and κm are the wave numbers for the outer and the 

inner turbulence scales. We have performed numerical 
calculations16,18 according to Eq. (58) for the case of 
vertical propagation of radiation in the atmosphere. We 
have chosen a vertical profile of atmospheric turbulence 
intensity in the form 
 

C2
n(h) =C2

n(0) 
( ) ( )

,

/ /

,

/ / , ,

2/3
0 1

4 3 2 3
1 1 0 1

1 + / )

1

h h h h

h h h h h h

−

− −

⎧ ≤⎪
⎨

+ >⎪⎩

 (59) 

 

where h ∈ [0, L]. The values of the parameters used are as 
follows: outer scale 2π/κ0 = 100 m, inner scale 

5.92/κ
m = 0.01 m, path length L = 1000 m, heights 

h0 = 30 m, h1 = 300 m, and coherence radius r0 = 0.1 m at the 

wavelength of 0.55 μm. 
Results of calculations are presented in Table II. 

Numbers in the first column indicate the wavelength where 
correction is executed (a reference wave), while in the 
second column the wavelength of corrected radiation is 
given, the third column gives the values of corresponding 
variances σ2

ΔΘ
. 

 
TABLE II. 
 

λ1, μm λ1, μm σ2
ΔΘ

⋅103, μm 

0.5 1.0 4.44 
0.5 2.0 8.06 
0.5 3.0 10.4 
0.5 4.0 12.2 
0.5 5.0 13.7 
0.5 6.0 15.0 
0.5 7.0 16.2 
0.5 8.0 17.3 
0.5 9.0 18.3 
0.5 10.0 19.2 

 
These results correspond to the outer turbulence scale 

2π/κ0 = 100 m. We have also performed calculations for the 

vertical profile 2π/κ0 = 2 h with the results appeared to be 

practically identical to those in Table II. So the variance of 
eikonals difference for two different wavelengths is 
insensitive to variations of the outer turbulence scale. At 
the same time, σ2

ΔΘ
 is rather sensitive to changes in the inner 

turbulence scale and in the path length. Table III shows the 
dependence of σ2

ΔΘ
 on changes in the inner turbulence scale 

at path 1000 m long. 
 

TABLE III. 
 

Inner scale of turbulence, 
5.92/κm , m 

0.03 0.01 0.003

σ2
ΔΘ

 , μm 0.017 0.019 0.020

 
Table IV presents the dependence of σ2

DH on the path 

length at the inner turbulence scale of 0.01 m. 
 
TABLE IV. 
 

Path length L, m 1000 3000 6000 10000 

σ2
ΔΘ

, μm 0.0192 0.0256 0.0299 0.0346 

 
Therefore, our results prove the efficiency of the two–

color adaptive correction13,15,16 to be high over a wide 
wavelengths range. 

 
11. ELEMENTS OF ADAPTIVE OPTICS (1984, 1987) 

 
It is known that wave–front corrector is the basic 

element of any adaptive system. Efficient correctors of the 
wave front tilts for adaptive systems operating in a 
turbulent atmosphere should satisfy the following demands: 
high operation speed, high enough spatial resolution, and a 
wide dynamic range of angular deflectors of radiation at 
significant mass and size of movable optical elements. To 
construct such a corrector is nowadays quite a complicated 
technological problem. 

In the known constructions of deflectors the speed of 
about 10–2–10–3 s is provided only for small optical 
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elements which makes them useful in operations only with 
narrow beams (not exceeding 10 mm in diameter). 

In this section we describe14 the passive–active 
bimorph deflector that uses a piezoceramic compensator to 
control angular orientation of an optical element (a mirror) 
of 50–g mass, in the range of angles up to 60′′, with the 
frequency up to 100 Hz. The square bimorph element is 
formed by two polarized piezoceramic disks with thickness 
of 1 mm made of ZTS–19 material. 

At the next step18 we constructed a 19–element 
compound mirror with hexagonally packed elements. It is 
precisely this packing that allows most abutting 
arrangement of the elements with minimum diffraction 
losses at their edges, and it also provides for the best filling 
of a round aperture. 

For the base of this compound mirror we used a thick 
glass plate with installation packets for 19 piezoceramic 
cylinders 17.4 mm in diameter. The packets keyways were 
cut by means of a diamond–tipped tool. The mirror 
elements are made in the form of hexagons from an optical 
glass 5 mm thick and about 15 mm in optical diameter. The 
reflecting surfaces are aluminium coated. Elements are 
attached to cylinders with the elastic optical cement. 

The actuators of a compound mirror are the 
piezoceramic ZTS–19 cylinders. They provide linear 
displacement of optical elements in the range ± 5λ (where 
λ = 0.63 μm) with the control voltage of ± 500 V and speed 
of about 10 ms. 

The view of 19–element mirror is presented in Fig. 9. 
 

 
 

FIG. 9. Photo of the 19–component compound mirror. 
 
To control the elements of a compound mirror in axial 

and two angular coordinates, we have designed an actuator 
using the piezoceramic cylinder with split electrodes at the 
surface. Control voltages are formed using signals from wave 
front sensors by means of special high–voltage amplifiers.14,20 

These elements are used in experiments on correction 
of beams and images in the turbulent atmosphere. 

 
12. EFFICIENCY OF CORRECTION FOR COMMON 
TILTS AND DEFOCUSING OF THE WAVE FRONT 

(1988) 
 

A diagram of an optical experiment is presented in 
Fig. 1. It must form an image of a remote object by means 
of the main mirror and an adaptive element which corrects a 
received wave front for aberrations. Besides, it performs the 
adaptive focusing of laser radiation on an object behind the 
medium layer. 

A device measuring moments of intensity distribution 
of the optical field in the focal plane is proposed19 here as a 

wave–front sensor generating a control signal for the 
adaptive optical element. This "moments meter" measures 
values of the following functionals: 
 

My = 
⌡⌠ ⌡⌠ d2r y I(F, r)

⌡⌠ ⌡⌠ d2r I(F, r)
 ,  Mz = 

⌡⌠ ⌡⌠ d2r z I(F, r)

⌡⌠ ⌡⌠ d2r I(F, r)
 , (60) 

 

Myy = 
⌡⌠ ⌡⌠ d2r y2 I(F, r)

⌡⌠ ⌡⌠ d2r I(F, r)
 ,  Mzz = 

⌡⌠ ⌡⌠ d2r z2 I(F, r)

⌡⌠ ⌡⌠ d2r I(F, r)
 , (61) 

 
where I(F, r) is the field intensity distribution in the focal 
plane. 

Based on the results of moments measurements, we 

may now construct a phase S^(0, r) which provides for its 
best correction S(0, r) describing the phase distortions of 
the wave front at the receiving aperture. This may be, for 
example, 
 

S^(0, ρ) = 
k
F (My y +Mz z) + 

1
2 ( )kF

2

 (Myy y
2 +Mzz z

2) . 

(62) 
 

Here the phase providing the correction S^(0, ρ), see 
Eq. (62), implies that adaptive element controls common 
tilts along two coordinate axes and wave front curvature in 
two directions. In real experiments the first two summands 
in Eq. (62) correspond to inclinations of a flat mirror 
whereas the other two summands imply use of two flexible 
mirrors, each changing its curvature only in one direction. 
One can use also two crossed cylindrical lenses. 

To estimate the efficiency of this correction algorithm, 
consider the following structure function: 
 

D(ρ1, ρ2)=<{[S(0, ρ1)– S^(0, ρ1)]–[S(0, ρ2)– S^(0, ρ2)]}
2>. (63) 

 
Here angular brackets mean averaging over an ensemble of 
random field values, and we use expansion of the random 
phase over orthogonal polynomials. The first term to be 
accounted for in Eq. (63) corresponds19 to 
 

D1(ρ1, ρ2) = 
24
5  <a2

5> (y1 z1 – y2 z2)
2 , (64) 

 
where <a2

5> is the variance of fluctuations of the wave front 

astigmatism. For the Kolmogorov model of turbulence 
spectrum 
 

<a2
5> = 2.32⋅10–2 (2R/r0)

5/3 . 
 

Our calculations19 show that adaptive correction (62) of 
common tilts and defocusing makes the equivalent coherence 
radius 9.3 times larger. 

 
13. ADAPTIVE OPTICAL SYSTEM TO CORRECT FOR 

IMAGE DISTORTIONS (1988) 
 

The first use of the simplest algorithm of adaptive 
correction of images constructed through the atmosphere has 
been described in Ref. 20. The adaptive optical system 
presented here should correct the image of an optical source 
for distortions due to random tilts of radiation wave front 
during its propagation through the turbulent atmosphere. 
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To perform an image correction algorithm we have 
built an experimental setup schematically shown in Fig. 10. 
The setup consists of a transmitting part, atmospheric path, 
measuring channel and a correction channel. 

 

 
 

FIG. 10. Block diagram of an experimental setup:  
1 – laser, 2 – collimator, 3 – diaphragm, 4 – rotating 
mirror, 5 – atmospheric path, 6 – beam–splitting plate,  
7 and 15 – lenses, 8 and 16 – optical filters, 10 and  
18 – processing units, 11 and 12 – amplifiers, 13 and  
19 – spectrum analyzers, 14 – active mirror, and 9 and  
17 – coordinate photodetectors. 

 
The transmitting part consists of a He–Ne laser 1; its 

radiation is shaped by a collimator 2 and a diaphragm 3. 
The atmospheric path 5 of length L = 100 m is at 10 m 
altitude above the ground. The laser beam of 1–cm diameter 
after passing the atmospheric path is splitted at the input of 
a receiving system. The first beam passes through an optical 
wedge 6 and comes to a measuring channel; the second 
beam reflected from the front surface of a wedge 6 comes to 
a correction channel. 

In the measuring channel the lens 7 forms an image of 
the source. The quadrant coordinate–sensitive 
photodetector 9 is placed in the focal plane of the lens 7. 
The processing unit 10 generates signals proportional to 
coordinates of the random position of center of gravity of 
the beam. Special amplifiers20 with the pass band of 0–
2 kHz have the dynamic range of 60 dB. The threshold 
angular displacement of the image center, still measured by 
the system, is 3.1⋅10–7 rad. Compensation for random 
displacements of image is performed14 by means of an active 
mirror 14. Choosing the gains we control the laser beam 
inclination in a way enabling us to form an image corrected 
for angular shifts of the source in the focal plane of the 
lens 15.  

The correction efficiency was examined with the 
methods of spectral analysis. We considered the temporal 
spectra of the image random gravity center displacements. 
The quality of correction was evaluated by the quantity 
 

Ey,z(f) = [Sy, z(f) / S ay, z(f)]
1/2 , (65) 

 

where S ay, z(f) and Sy, z(f) are the spectral power densities of 

the random axial displacements of an image energy gravity 
center in a system with and without an adaptive correction, 
respectively. Measurements were performed successively in 
three frequency ranges: 0.05–2 Hz, 0.5–20 Hz, and  
5–200 Hz. 

Figure 11 shows frequency dependences of the 
efficiency of correction for angular displacements (65) in 
two perpendicular planes E

y(f) and Ez(f). It is seen that 

correction efficiency along both coordinates of the image 
gravity center is between 4 and 12. The greater is the 

frequency of random displacements of the center, the lower 
is the efficiency. These dependences show dynamic 
potentialities of this adaptive optical system. 

 

 
 

FIG. 11. Efficiency of correction for angular 
displacements of image gravity center along Y–axis (a) 
and along Z–axis (b). 

 

 

 
 

FIG. 12. Probability distribution of the signal, proportional 
to random displacement of the gravity center along Y (a) 
and Z (b) axes with (curve 2) and without (curve 1) 
adaptive image correction. Here Pmax is maximum of the 

probability distribution in the case of no correction. 
 
The total over the frequency range efficiency of an 

adaptive image correction can be estimated from a 
comparison of histograms. With the help of histograms we 
have derived the rms deviations and calculated the values of 
M

y, z = σy, z/σ ay, z (here σ ay, z and σy, z are the rms 

deviations of random center displacements of images with 
and without correction). Our results are My = 5.3 and 
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M
z = 7.4. For a convenience of the comparison, Fig. 12 

gives superimposed probability distributions for the 
analyzed signals in the systems with and without 
correction, in dependence on measured voltages U

z and 

Uy. 

Thus, the performed investigations have shown good 
efficiency of image correction by means of an adaptive 
optical system.20 

 
14. MULTICOMPONENT SYSTEM OF IMAGE 

CORRECTION (1990) 
 

In this section we consider21 efficiency of a combined 
adaptive four–component mirror each element of which 
corrects tilts in two orthogonal directions only. 

At present it is acknowledged that it is worth using 
systems compensating for image displacements as a 
primary system of adaptive correction in telescopes. Such 
systems use, as a rule, sensors that measure coordinates of 
an image center of gravity. There already exists a number 
of telescopes using compensation for image gravity center 
displacements. Actually, this means constructing of a high 
precision teleguide which now is incorporated in most 
telescopes. 

The next stage of development of adaptive optical 
systems is correction for higher–order aberrations of the 
phase front. It requires some special equipment: the 
wave–front sensor and the controlled active (adaptive) 
mirror. The use of two types of mirrors is possible: the 
compound one performing zonal correction and the 
flexible one enabling the performance of mode correction 
for the phase front aberrations. 

Since we use a four–component mirror, it is natural 
that the wave–front sensor should have four identical 
meters measuring gravity center of image within the 
limits of each subaperture.20 

The possible arrangement of an optical experiment is 
shown in Fig. 13. The first loop of the adaptive 
correction for the displacements of the gravity center as a 
whole is provided by the first adaptive element A1. If the 

aperture of an image–forming optical device is considered 
as a circle of radius R, then the wave phase after angular 
correction can be expressed in terms of the following 
expansion over Zernike polynomials: 
 

S1(r) = ∑
j=4

∞

 aj Fj(r/R) , (66) 

 

where Fj(r/R) are Zernike polynomials and aj are the 

phase coefficients. The first term a1F1(r/R) in Eq. (66) is 

omitted because it does not affect the phase fluctuations 
in the image. The second stage of the adaptation includes 
measuring of local wave front tilts in the limits of 
subapertures and their correction by means of the four–
component mirror A2. 

Before proceeding to calculations, let us investigate 
the physical structure of different stages of the adaptive 
correction shown in Fig. 13. If the initial wave phase is a 
plane, then an image formed by the optical system (or by 
an equivalent lens) presents the Airy diffraction picture. 
The phase aberrations spread the image. After the first 
correction with the help of element A1, the formed image 

is center–stabilized but the phase aberrations like 
astigmatism and defocusing still remain. These aberrations 
surely make the local tilts to appear within each of the 
subapertures. 

 

 
 

FIG. 13. Arrangement of an optical experiment: 1 and  
2 – lenses, 3 – four–lens unit, 4 – coordinate 
photodetector, 5 – unit of four coordinate–sensitive 
photodetectors, and 6 – image photorecorder. 

 
It should be noted that account for defocusing solely 

in the phase of Eq. (66) suggests that correction of random 
tilts at each segment of a four–component mirror makes its 
surface to be a side of a quadrangular prism which reflects 
waves in four directions. 

Let us examine the efficiency of correction using such 
a compound mirror. Let the initial lens forming the image 
have a Gaussian aperture, and compare the focal plane 
intensity distribution in three most typical cases: 
1) propagation of radiation in vacuum, 2) presence of 
aberrations like defocusing with corrected common tilts, and 
3) the defocusing corrected by means of a compound four–
component mirror. 

In the case 1 intensity distribution is 
 

I1(F, ρ) = Ω2 exp (– ρ2 Ω2/R2) , 
 

where Ω
 
=
 
kR2/F, while the initial Gaussian aperture is  

A(ρ) = exp (– ρ2/2R2) . 
 

In the case 2 the average intensity distribution is 
 

<I2(F, ρ)> = 
Ω2

2R2 ⌡⌠
0

∞
 

 
dr r 

exp (– r2/4R2) J0(krρ/F)

(1 + 24<a2
4> r2/R2)

 . (67) 

To make analytical calculations, let us proceed from the 
intensity distribution <I> to the corresponding angular 
spectrum 
 

P(κ) = ⌡⌠ ⌡⌠ d2ρ exp (iκρ) <I(F, ρ)> . (68) 

Thus we obtain for the case of vacuum 
 

P1(κ) = πR2 exp (– κ2 R2/4Ω2) , 
 

and for the case 2 

P2(κ) = 
π R2

(1 + 24<a2
4> k2 R2/Ω2)

 exp (– κ2 R2/4Ω2) . (69) 

 

The characteristic scale of change of the vacuum spectrum 
P1(κ) is determined by the exponential fall off and 

corresponds to the frequency 2Ω/R which determines the 
angular dimension of Airy disk. In the case 2 the spectrum 
is below the vacuum one: 
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P2(k)

P1(k) = (1 + 24<a2
4> κ2 R2/Ω2)–1 . 

 

At the characteristic frequency κ ∼ 2Ω/R this decrease is 
numerically equal to (1 + 96<a2

4>)–1. 

As a result of correction (case 3) we have 
 

P3(κ)=
π R2

(1 + 24<a2
4> k2 R2/Ω2)

 exp 
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⎬
⎪⎫

 

 

 , (70) 

 

where κ = (κy, κz) and b is the distance between the centers 

of subapertures. 
As a result the increase of the spectrum due to the 

correction made is as follows 
 

P3(k)

P2(k) 
 

k = 2X/R

 � exp (– 24<a2
4> b2/R2) × 

× cosh(48<a2
4> b2/R2)

⎩⎪
⎨
⎪⎧ 

 
1 + 

8×24⋅24 <a2
4>

2 b2 / R4

1 + 96<a2
4>

 × 

 

× [cosh(48<a2
4> b2/R2) + sinh (48<a2

4> b2/R2)]
⎭⎪
⎬
⎪⎫ 

 
 . (71) 

 

The efficiency of an adaptive correction for defocusing can 
be numerically derived from Eq. (71) for concrete values of 
<a2

4>, Ω, and b/R. It is interesting to note the anisotropy of 

the spectrum P3(κ), Eq. (70). The spectrum reaches its 

maximum at the diagonals (κ
y = κz). 

It is clear that the effect of spectrum increase along 
diagonals (what results in narrowing the intensity 
distribution) because of four–component adaptive corrector 
should be greater at larger ratio R/r0. For example, for 

R/r0 = 4 the increase is 4.64, and for R/r0 = 5 it is 12.6. 

Thus, the graph of this distribution looks typically like a 
four–lobe diagram, with the lowest spread caused by 
residual phase distortions being observed along diagonals. 

These results21 quite well demonstrate efficiency of the 
considered simple devices for image correction. 

 
15. NUMERICAL SIMULATION OF AN ADAPTIVE 

GROUND–BASED TELESCOPE (1991) 
 

At present adaptive optical systems find most efficient 
applications in astronomy. 

It is known that atmospheric turbulence limits the 
telescope resolution to about 1 second of arc, whereas for 
λ = 0.5 μm the diffraction–limited resolution of the 
telescope 3.6 m in diameter is 0.03 seconds. In this section 
we present the results22 of calculation of the point–spread 
function for an adaptive telescope with circular aperture 
1 m in diameter at the wavelength of 0.55 μm. We consider 
two kinds of phase correctors: the mode corrector which 

compensates for phase front aberrations from tilts to coma 
and the compound mirror with hexagonally packed 
elements. 

Our program of simulation of the phase distortions of 
a plane monochromatic wave, caused by atmospheric 
turbulent inhomogeneities in the refractive index, consists 
of two parts. The first one generates phase distortions using 
Fourier transform method. The spatial scale of the 
distortions is limited by the step from below and by the size 
of calculational grid from the above. Second part 
recalculates scales greater than the size of calculational grid 
into classical aberrations which are considered as Gaussian 
random variables with zero average and the variances 

s2
n = 8π (n + 1) 

⌡⌠
0

$
 

 
dκ κ Φ(κ) 

J 2n+1(k R)

(k R)2  , (72) 

where n is the radial degree of the corresponding 
polynomial, R is circle radius, J

n(x) is Bessel function, 

Φ(κ) = 0.489 r0
–5/3⋅κ–11/3 is the spatial spectrum of phase 

distortions, and r0 is Fried's coherence radius. 

Hence, our method of simulating turbulent 
distortions22 has the following advantages over the known 
ones: first, the atmospheric coherence length r0 is the input 

parameter rather than estimated one; second, our method 
allows for greater scales than the size of calculational grid; 
and, third, the random spectral amplitude of distortions is 
generated in a way to get purely real values of phase 
distortions. 

We present here some results obtained by statistical 
image averaging. Taking the ensemble–average of random 
point–spread function, we obtain long–exposure intensity 
distribution in the image plane I(γ

y, γz). Then we calculate 

energy per circle of radius ω (in Figs. 14–16 radius ω is 
presented in seconds of arc) 
 

E(ω) = 

⌡⌠ ⌡⌠ 

g
2
y + g

2
z £ w

2 

I(gy, gz) dgy dgz

⌡⌠ ⌡⌠ 
–∞  

 ∞ 

I(gy, gz) dgy dgz

 ,  . 

Remind that calculations have been performed for the 
telescope 1 m in diameter and coherence length r0 of 10 and 

20 cm. 
Limiting curves in Figs. 14–16 correspond to the 

diffraction limit and that without correction. For the mode 
corrector we obtained: curve 1 – correction for common 
tilt; 2 – correction for common tilt, defocusing, and 
astigmatism; and, 3 – correction for common tilt, 
defocusing, astigmatism, and coma. For the compound 
corrector we performed calculations for a number of 
segments equal to 7, 19, and 37 with preliminary corrected 
common tilt at the receiving aperture. Each segment has 
one, two, or three degrees of freedom that corresponds to 
correction of either common or local tilt or both of them 
within the limits of each segment. 

We do not present curves corresponding to local tilts 
correction because this correction does not improve E(ω) 
significantly with respect to common tilt correction within 
the overall aperture. It is seen from figures that correction 
of local average phase by means of compound mirror gives 
great increase in the energy per circle of diffractional radius 
(λ/D ≈ 0.1 second of arc) while the correction of both local 
average phase and tilt gives E(ω) close to diffractional 
distribution for a number of segments 19 and 37. Correction 
for aberrations starting from tilt to coma inclusive gives also 
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good results for r0 = 20 cm (D/r0 = 5) but its efficiency 

reduces fast with increasing turbulence intensity for 
r0 = 10 cm. The lowest curves in all figures correspond to 

image forming without any phase correction. It is seen that 
radius of circle intercepting 80% of energy constitutes 0.55′′ 
for r0 = 20 cm and 1.1′′ for r0 = 10 cm what well agrees with 

the values known from astronomic observations. 
 

 
a 

 
b  

FIG. 14. Efficiency of lowest modes correction: 
1) correction for tilt; 2) correction for tilt, defocusing, 
and astigmatism; and, 3) correction for tilt, defocusing, 
astigmatism, and coma. 
 

 
a 

 
b  

FIG. 15. Efficiency of corrections with a compound 
mirror: average phase correction for each segment in the 
cases of 7–, 19–, and 37–component mirror. 

 
a 

 
b  
 

FIG. 16. Correction of the average phase and local tilt for 
each segment in the cases of 7–, 19–, and 37–component 
mirror. 

 
16. CALCULATION OF POINT–SPREAD FUNCTION 
FOR AN ADAPTIVE TELESCOPE WITH HARTMANN 

WAVE–FRONT SENSOR (1992) 
 

We continue to develop our mathematical model with 
the successive complications which bring it closer to reality. 
In this section we present the results23 of numerical 
calculation of the point–spread function (PSF) for an 
adaptive telescope. Our program simulates its main 
components such as wave–front sensor of Hartmann type 
and compound corrector representing the array of square–
shaped elements. 

The intensity distribution in the focal plane of each 
subaperture was calculated in paraxial approximation, 
therefore both diffraction and aberrations of the wave front 
were considered. The photon noise was simulated by means 
of a Poisson random–number generator. 

Below the Hartmann sensor is considered as a device 
which measures displacements of segments of the wave front 
of an optical beam focused by the subapertures. The 
program computes displacements of intensity distribution 
center in the focal plane of each subaperture with respect to 
diffractional position and determines with the above–
described algorithms the tilts and translations for every 
component of a corrector. Corrected wave front was used to 
calculate short–exposure PSF which then was averaged over 
an ensemble of random turbulent distortions. 

During the calculations, simulation of random 
turbulent distortions of the wave front is being done in the 
phase screen approximation with the screen placed in the 
plane of the telescope aperture. Two–dimensional spectral 
density of the phase fluctuations of a plane wave 
propagating in the atmosphere in the geometrical–optics 
approximation is 
 

FS(κ) = 0.489 r–5/3
0  (κ2 + k2

0)
–11/6 , (73) 
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where r0 �  (0.423 k2⌡⌠ C2
n(ξ) dξ)–3/5 is the Fried's 

coherence radius, k = 2π/λ is the wave number, C2
n(ξ) is the 

profile of structure constant of the refractive index 
fluctuations along the propagation path, and κ0 = 2π/L0, L0 

is the outer scale of turbulence taken to be 100 m. The 
inner scale of turbulence does not enter explicitly into the 
spectrum given by Eq. (73), but in the process of simulation 
of the turbulent distortions we lose scales being less than a 
grid pitch and therefore the inner scale appears. It is equal 
to a grid pitch, which in our experiments is about 2 cm. 

We use thus obtained set of random wave front values 
to compute successively the complex amplitude distribution 
and the intensity distribution in the focal plane of the 
collecting lens. The lens aperture function was taken to be 
unity within a square of 1 m side and zero outside it. 

The compound wave–front corrector is an array of 
square–shaped elements with the side d = D/N 1/2

c  (where 

Nc is a number of elements) controlled independently in 

three different degrees of freedom: tilts along Y and Z axes 
and translation along X axis. We adopt that corrector and 
apertures of the wave–front sensor are placed in the planes 
conjugate with the plane of the telescope aperture. 

Wave–front sensor is an array of collecting lenses of 
the same size and shape as the elements of the corrector 
array. Distorted image of a monochromatic point source is 
formed in the focal planes of each subaperture of the sensor. 
We reconstructed the wave front using measurements of the 
image intensity distribution.  

For this purpose we used mode method of 
reconstruction of the wave front as the finite sum of Zernike 
polynomials as well as an original analog method. It should 
be mentioned here that the analog method does not assume 
measurements, it is rather a control based on data of phase 
gradients measurements with Hartmann method. 

Performance of this analog method requires 
construction of a special controllable (active) mirror with 
the elements whose size and shape must precisely coincide 
with those of the subaperture of a Hartmann sensor referred 
to the input pupil of the optical system. 

The mirror is a multilayer construction. The first layer 
supports the whole mirror; the second layer represents an 
active element which turns the whole mirror surface to an 
angle corresponding to an average over all subapertures data 
from the Hartmann sensor. Third layer represents an active 
element which turns separate segments (there are four 
segments) to angles corresponding to measured phase 
gradients averaged over all segments. The next layer is 
divided into 16 segments more, and so on. 

Control of each layer within each element is calculated 
by simple summation of the measured local phase gradients 
minus value of the preceding control step. 

First of all we present results of PSF calculation 
obtained assuming that the wave front distortions are known 
at any point of the aperture. Tilts and translations for each 
corrector's component are determined by minimizing residual 
wave front distortions with the least–squares method. These 
results demonstrate the restrictions connected only with the 
finite number of a corrector elements. 

Figure 17 shows the radial distribution of image intensity 
obtained by averaging of long–exposure PSF over Y angle. 
Fig. 17a corresponds to r0 = 20 cm (D/r0 = 5) while Fig. 17b 

– to r0 = 1 cm (D/r0 = 10). Number of corrector elements Nc 

was from 1 to 64. In Table V we present values of Strehl ratio 
St (PSF maximum referred to its diffractional value) and 
PSF's full width at half maximum (FWHM). The wavelength 
λ hereinafter equals 0.55 μm. 

It is seen that diffraction–limited resolution 
(FWHM = 0.09′′ for D = 1 m and λ = 0.55 μm) is reached 
just when the size of corrector elements is 3–5 times greater 
than the coherence length r0. Further increase of the 

number of elements only leads to an increase of the 
intensity. 

Below we present the results of PSF calculation for an 
adaptive telescope using Hartmann–type wave–front sensor 
and compound wave–front corrector controlled by the 
algorithm of mode reconstruction of wave front 
distortions.23,24 
 

 
a  

 
b  

FIG. 17. PSF as a function of angular distance α′′ in the 
case of precise measurements of wave front distortions made 
using a compound corrector: 1) without correction, 
2) Nc = 1 (correction of common tilt), 3) Nc = 4, 

4) Nc = 16, and 5) Nc = 64; r0 = 20 (a) and r0 = 10 cm (b). 

 
TABLE V. 
 

Nc d/r0 
St FWHM 

r0 = 20 cm 

– – 0.03 0.5′′ 
1 5 0.13 0.14′′ 
4 5/2 0.45 0.10′′ 
16 5/4 0.67 0.09′′ 
64 5/8 0.75 0.09′′ 

r0 = 10 cm 

– – 0.008 1.1′′ 
1 10 0.017 0.64′′ 
4 5 0.089 0.11′′ 
16 5/2 0.31 0.10′′ 
64 5/4 0.46 0.10′′ 

 
Figures 18a and b show long–exposure PSFs obtained at 

r0 = 20 cm and Ns = 16, with the corresponding values of St 

and FWHM presented in Table VI. Number of polynomials 
Nm in mode wave front expansion was taken to be 3, 6, 10, 

15, 21, and 28, what corresponds to polynomials of the degree 
from 1 to 6. The error of wave front reconstruction increases 
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starting with the number Nm = 21. As is seen from Fig. 18 

and Table VI, no further increase in the efficiency is 
observed already at Nm = 10. Thus it seems that the number 

of polynomials equal to the number of the sensor 
subapertures is quite sufficient when using the algorithm of 
mode wave front reconstruction. 
 

 
a 

 
b  

FIG. 18. PSF for the case of mode algorithm of wave 
front reconstruction for different number of polynomials 
Nm in the mode expansion (Eq. (66)): 1) Nm = 3, 

2) Nm = 6, 3) Nm = 10, 4) Nm = 15, 5) Nm = 21, and 

6) Nm = 28; r0 = 20 cm and Nc = Ns = 16. 

 
TABLE VI. 
 

Nm St FWHM 

3 0.11 0.20′′ 
6 0.25 0.13′′ 
10 0.47 0.10′′ 
15 0.54 0.10′′ 
21 0.30 0.11′′ 
28 0.09 0.27′′ 

 
 

 
a 

 
b  

FIG. 19. PSF for the case of analog wave front 
reconstruction: r0 = 20 cm (a) and r0 = 10 cm (b); 

1) Ns = 4; 2) Ns = 16; 3) Ns = 64; and, 4) Ns = 256. 

For a comparison we present here some results of the 
PSF calculation by means of analog wave front reconstruction 
algorithm. The number of subapertures of the wave–front 
sensors (or that of corrector segments) was taken to be 4, 16, 
and 64. Results of calculations are presented in Fig. 19 and in 
Table VII. Although correction here is much worse than in the 
case of mode wave front reconstruction, we can reach a many 
times gain in the intensity compared to uncorrected PSF if a 
sufficient number of sensor subapertures is taken. 
 
TABLE VII. 
 

Ns d/r0 
St FWHM 

r0 = 20 cm 

4 5/2 0.2 0.12′′ 
16 5/4 0.24 0.14′′ 
64 5/8 0.26 0.14′′ 

r0 = 10 cm 

4 5 0.03 0.27′′ 
16 5/2 0.07 0.20′′ 
64 5/4 0.10 0.19′′ 
56 5/8 0.10 0.21′′ 

 
Finally, we present the results of PSF calculations 

allowing for a photon noise in the wave–front sensor.23 
Calculations were performed for r0 = 20 cm. In the first case 

we have varied statistical average of a number of photons Nph 

at a fixed number of sensor subapertures (see Fig. 20 and 
Table VIII) while in the second case we have varied the 
number of subapertures at a fixed number of photons 
Nph = 800 (see Table IX). The number of polynomials in the 

algorithm of mode wave front reconstruction was taken to be 
approximately equal to the number of subapertures. 

 

 
 

FIG. 20. PSF for the case of mode algorithm allowing for 
quantum intensity fluctuations: 1) Nph = 1600; 

2) Nph = 800; 3) Nph = 400; and, 4) Nph = 100; r0 = 20 cm, 

Ns = 16, and Nm = 15. 

 
TABLE VIII. 
 

Nph 
St FWHM 

1600 0.39 0.11′′ 
800 0.28 0.12′′ 
400 0.17 0.14′′ 
200 0.10 0.20′′ 

 
TABLE IX. 
 

Ns Nm St FWHM 

4 6 0.26 0.12′′ 
16 15 0.28 0.12′′ 
64 28 0.18 0.15′′ 

 



V.P. Lukin Vol. 8, No. 3 /December 1995/ Atmos. Oceanic Opt. 171 

 

Therefore, in order to reach the efficiency corresponding 
to an infinite signal–to–noise ratio one needs about 100 
photons for each sensor subaperture (the size of subaperture is 
approximately equal to the coherence length) during the time 
when the turbulence is assumed to be frozen. 

For a fewer number of photons there exists optimum 
number of subapertures. If the number of subapertures exceeds 
this optimum, high level of noise causes strong increase in the 
error of measuring local tilts of the wave front; in the opposite 
case the reconstruction error increases due to insufficient 
spatial resolution of the sensor.23 

Results of the PSF calculations for an adaptive telescope 
with Hartmann–type wave–front sensor and a compound 
corrector, presented in this section, were obtained using the 
program which can be used by designers of adaptive optical 
systems in order to choose optimum configuration of wave–
front sensors and correctors or to test different algorithms of 
wave front reconstruction or corrector control. 

 
CONCLUSION 

 
First of all it should be stressed that most of 

investigations reviewed in this paper do not concern with any 
specific design of atmospheric optoelectronic systems, e.g., an 
adaptive telescope. In our investigations we put emphasis to 
the study of pure atmospheric requirements to adaptive optical 
systems.25 Of course, the general direction of such studies has 
followed some logics and advances reached by the world 
optical community. 

How do we plan further development? First of all, 
investigations of characteristics of atmospheric optoelectronic 
systems imply dynamic modelling of all components of an 
adaptive system as well as of turbulent distortions of the wave 
front. This should allow us to optimize time of signal storage 
in the wave–front sensor and to examine different corrector–
controlling algorithms, including those that "forecast" future 
wave front distortions from measurements performed at the 
present moment. 

Our program also implies investigation of the effect of 
"non–isoplanarity", modelling of artificial reference sources 
(pseudostars), various types of wave–front sensor (e.g., shear 
interferometer, Hartmann and wave–front–curvature sensor) 
and correctors, and also adaptive systems using several wave–
front correctors.25 

Just in 1992 we have performed24 comparative analysis of 
the efficiency of deformable and compound mirrors in 
application to the problem of correcting for turbulent 
distortions of the wave front. 

No doubts that creation of a model of turbulent 
atmosphere remains of principle importance. Investigations of 
the potentialities of adaptive systems under the conditions of 
speckling are also urgent. 
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