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When modeling the spread of atmospheric contaminants, the determination of statistical 

characteristics of the admixture concentration is of importance. In this paper, the determination of 
distribution function of atmospheric polydisperse admixtures is considered.  

 
Propagation of atmospheric admixtures is 

usually simulated by means of semi-empiric equation 
of the turbulent diffusion1: 
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where C  and iU  are the mathematical expectations 
of the admixture concentration and the wind velocity 
components, Vs is the velocity of gravitational 
sedimentation of particles, Kij are the components of 
the tensor of coefficients of turbulent diffusion, Q  is 
the term describing the sources and sinks of 
admixtures, x3 = z corresponds to the vertical 
coordinate. The bar over symbol means averaging 
over the statistical ensemble. Summation over 
repeated indices is meant. Equation (1) describes 
propagation of monodisperse fraction of admixtures 
with aerodynamic diameter D of particles. Therefore, 
Vs = Vs(D) and ( )Q Q D=  are functions of the 
particle diameter. When determining the 
concentration of polydisperse systems, the considered 
range of particle diameter Dmin ≤ D ≤ Dmax is usually 
divided into the intervals ∆D, in which Vs and Q  
are assumed to not depend on particle diameter, and 
the concentration of fractions is determined by 
Eq. (1); then the concentrations of the found 
monodisperse fractions are summarized. 

Propagation of atmospheric admixtures occurs in 
the turbulent medium, therefore, determination of 
some statistical characteristics of concentration fields 
is of practical importance. In particular, the 
concentration variance σ2 can be determined through 
solving the equation2: 
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However, finding the mathematical expectation 
and the concentration variance is insufficient for 
determining such characteristics as, for example, the 
probability of exceeding MPS by the admixture 
concentration, etc. In this paper we consider the 

determination of distribution of atmospheric 
polydisperse admixture concentrations, which allows 
solving such problems. 

Let Cm be the density of the instant value of the 
concentration of the monodisperse fraction at the axis 
of the particle diameters. Its mathematical 
expectation corresponds to the solution of Eq. (1) 
with the preset density of distribution of the term 
describing sources of admixture mQ  at the axis of 
the particle diameters. Accordingly, the instant value 
and the mathematical expectation of the 
concentration of polydisperse admixture are 
represented by the formulas 
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Equation (2) for the density of the 
concentration variance of the monodisperse fraction 

2
m,σ  in which Ñ  should be replaced by  m,Ñ  

corresponds to Eq. (1) written for  m.Ñ  
Since the concentration of polydisperse system is 

the integral parameter, its distribution function 

p( )F C  has the form3: 
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where erf is the integral of probability, pÑ  is the 
mathematical expectation of the polydisperse 
admixture concentration (see Eq. (3)), β is the 
second parameter of the distribution function. The 
relationship3: 
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where 2
pσ  is the concentration variance of the 

polydisperse admixture, relates β to pÑ  and 2
pσ . The 

distribution function (4) is the exact analytical 
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solution of the Fokker–Plank–Kolmogorov equation 
and was obtained in the framework of the same 
assumptions as for deriving Eqs. (1) and (2). The 
form of F(Cp) is justified by the cycle of experiments 
carried out in the aerodynamic tube and corresponds 
to the classic properties of asymptotics of the theory 
of turbulent combustion.3 Note that F(0) is the 
probability of observation of zero values of the 
concentration of polydisperse admixtures, that is the 
consequence of the concentration alternation effect.3 
 Since instant values of the concentrations of 
monodisperse fractions of different diameters are 
statistically independent, formula for the 
concentration variance has the form (see analogous 
formula in Ref. 4) 
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To determine F(Cp), it is necessary and 
sufficient to solve equations (1) and (2) for m,Ñ  2

m,σ  

and to determine pC  and β from Eqs. (3), (6), and (5). 
 Consider the example, in which a stationary 
point source with the coordinates x0 = 5 km, 
y0 = 10 km, z0 = 50 km is situated in the left-coast 
part of the Novosibirsk city (see Fig. 1). 

Two types of stationary point sources of 
polydisperse admixture with the same power but 
different dispersion composition of particles were set 
for the range 0 ≤ D ≤ 50 µm: 
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where δ is delta-function. The source emits mainly 
fine particles in the first variant, and coarse ones in 
the second one. The meteorological conditions were 
taken typical for July in the region. The velocity at 
the weather-vane level at the left boundary of the 
area of calculations was set equal to 3 m/s. The 
results of calculation of pC  and σp at four points on 

the line x > x0, y = 10 km, z = 10 m (see Fig. 1) are 
presented in the Table. 

It is seen in the Table that the calculated values 
of mathematical expectation of concentrations of two  
 

considered polydisperse systems differ insignificantly. 
At the same time, the values of the standard 
deviation of the polydisperse admixture 
concentrations essentially depend on the shape of the 
initial particle size distribution. 

 

 

Fig. 1. Schematic image of the area of calculations. The 
source is marked by cross; the points, at which the 
mathematical expectations and the standard deviation of the 
concentration were calculated, are numbered. 

 
Table. Calculated values of pÑ  and σp, arbitrary units 

Distance from the source, km 
Parameter

7.5 9.5 12.5 15.5 

 variant m1Q  

pÑ  1.99 ⋅ 105 2.74 ⋅ 104 3.95 ⋅ 103 6.87 ⋅ 102 

σp 8.44 ⋅ 103 2.62 ⋅ 103 5.13 ⋅ 102 1.16 ⋅ 102 

 variant m2Q  

pÑ  1.95 ⋅ 105 2.62 ⋅ 104 3.71 ⋅ 103 6.13 ⋅ 102 

σp 4.72 ⋅ 103 1.41 ⋅ 103 2.71 ⋅ 102 5.77 ⋅ 101 
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