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The dependence of all the values comprising an exact vibration-rotation 
Hamiltonian on the structural and dynamic parameters of a molecule is obtained in 
an explicit form for the axially symmetric molecules of ZXY3 and XY3 type. 

 
Knowledge of a correct vibration-rotation 

Hamiltonian of a molecule is very important for solving 
almost any problem of vibration-rotation spectroscopy 
of molecules.  In the general case for a normal (i.e., 
nonlinear with the vibrations of only small amplitude) 
molecule such a Hamiltonian is well known1$3: 

 

H
hc = 

1
2 ∑    λωλ (p

2
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λ) + 

+ 
1
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In Eq. (1) ωλ and kλ…ν are the harmonic 

frequencies and anharmonicity constants; Jα and Gα are 

the operators of the components of the total and 
vibrational angular momenta, respectively; the third 
term in Eq. (1) is a small operator depending on 
vibrational coordinates qλ, which is a small addition to 

the potential function and, as a rule, it is not 
considered; Gα and μαα can be represented as 
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In this case the equilibrium rotational constants Be
α, the 

Coriolis constants ζαλμ, and the parameters aαβλ  depend 

only on the parameters of equilibrium configuration of 

the molecule r e
Nα, which can be expressed via the 

equilibrium bond lengths and the angles between them, 
nuclear masses, and transformation coefficients lNαλ: 

 

ζαλμ = ∑    
N
(lNβλ lNγμ0 $ lNγλ lNβμ); (4) 
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Nγ); (5) 
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In Eqs. (4)$(7) α�≠�β�≠�γ.  The equilibrium 

parameters r e
Nα can be determined from the 

relationships 
 

∑    
N
 mN reNα = 0,   ∑    

N
 mN reNα r

e
Nβ = 0  for  α ≠ β. (8) 

 

To determine the constants lNαλ, one should use the 

Eckart conditions 
 

∑    
N
 m1/2

N  lNαλ = 0, (9) 
| 

∑    
N
 m1/2

N  (lNαλ r
e
Nβ $ lNβλ r

e
Nα) = 0 (10) 

 

and the conditions of orthogonality 
 

∑    
Nα

 lNαλ lNαμ = δλμ , (11) 

 

as well as the conditions for second derivatives of the 
potential function 
 

Wλμ ≡ (∂
2V/∂qλ ∂qμ)q=0 = 0. (12) 

 

However, since in the general case the potential 
function is unknown, it is appropriate to use the 
symmetry properties of a molecule.  Then, if the 
vibrational coordinates qλ and qμ are transformed by 

different irreducible representations of the molecule 
symmetry group, the relations (12) are fulfilled 
identically.  However, if qλ and qμ have the same 

symmetry, the symmetry properties cannot already be 
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used for deriving the relationships of Eq. (12) type.  As 
a consequence, the values of lNαλ can be determined 

only as functions of some arbitrary parameters.  One 
can show that in the general case the number of these 
parameters is equal to the number of different pairs of 
vibrational coordinates of the same symmetry. 

Since in practical applications the form of all the 
parameters entering into the Hamiltonian or, as 
minimum, the possible relationships between them 
should be known, in this paper the problem has been 
formulated to determine the parameters in Eqs. (2)$(7) 
for a comprehensive investigation interesting from the 
standpoint of analysis of different intramolecular effects 
and interactions in the class of molecules of ZXY3 type 
of C3V symmetry. 

 

 
FIG.1. Positions of axes and nuclei of ZXY3 molecule 
of C3V symmetry. 

 
Having recognized that all the values entering into 

Eqs. (2)$(7) are the functions of the parameters lNαλ 

and r e
Nα, first of all, it is necessary to determine these 

parameters from Eqs. (8)$(11) and symmetry 
properties of the molecule.  Solution of Eq. (8) (see the 
positions of nuclei and coordinate axes in the figure) 
gives: 

 

re4x = re5x = 0,  re1x = $ 2re2x = $ 2re3x = 2ρe sinαe/ 3, (13) 
 

re4y = re5y = 0,   re1y = 0,   re3y = $ re2y = ρe sinαe, (14) 
 

re4z = 
3mh $ M5 re

M4 + M5 + 3m ,  re5z = 
M4 re + 3m (re + h)

M4 + M5 + 3m  , (15) 

 

re1z = re2z = re3z = $ 
M4 h + M5 (re + h)

M4 + M5 + 3 m  ; (16) 
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⎨⎧

⎭
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4
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1/2

. (17) 

 

As a consequence, the equilibrium moments of inertia 
Ie
α are of the form: 

 

Ie
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$2
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+ 2mρ2
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z = 4m ρ2
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2αe. (19) 

 

Solution of Eqs. (9)$(11) gives the following 
relationships for lNαλ parameters:  

a) for λ = 1, 2, 3 (nondegenerate vibrations): 
 

l3yλ = $ l2yλ = $ 3 l2xλ = $ 3 l3xλ = 3 l1xλ/2 = l 
(1)
λ /2,  
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Besides, the following relationships must hold: 
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where λ, μ = 1, 2, 3.  Equations (20)$(24) define the 
parameters lNαλ as functions of three parameters, which 

can be determined from the conditions (12).  
 

(b) for λ = 4, 5, 6 (degenerate vibrations): 
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 = l4yλ1
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 = 0,   l1xλ2

 = l4xλ2
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 = 0, 
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The relevant conditions of orthonormality should be 
added to Eqs. (25)$(31).   

It should be noted that the use of  Eqs. (20)$(31) in 
the general case results in rather complicated solutions.  
In any case, the six parameters lNαλ (three for the 

nondegenerate vibrations with λ = 1, 2, 3 and three for 
the degenerate ones with λ = 4, 5, 6) remain arbitrary. 

The relationships (20)$(31) can then be used for 

the determination of Coriolis ζαλμ and vibration-rotation 

aαβλ  parameters.  One can show that after substitution 

of Eqs. (20)$(31) into Eqs. (4)$(6) and a series of 
transformations the following relations are valid: 

 
a) for λ = 1, 2, 3: 
 

axx
λ  = ayy

λ  = m (2ρe sinαe l 
(1)
λ  $ 6 (re + h) l 

(2)
λ ) $ 

 

$ 2 M4 re l 
(3)
λ , (32) 

 

azz
λ  = 4 m ρe sinαe l 

(1)
λ ; (33) 

 

for λ = 4, 5, 6: 
 

axx
λ1 = $ ayy
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λ2 ≡ a
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4

3
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), (34) 

 

axz
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λ1 = ayz
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xz
λ  = $12 m r

e
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 ; (35) 

 
b) for λ = 1, 2, 3 and μ = 4, 5, 6: 
 

ζy
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λμ2

 = $ ζy
μ1λ

 = ζx
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(1)
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(2)
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 $ 3 (m/M5)
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(3)
λ  {l4yμ2

 $ (M4/M5)
1/2 l5yμ2

} ; (36) 

 
c) for λ, μ = 4, 5, 6: 
 

ζz
λ1μ2

 = $ ζz
λ2μ1

 = ζz
μ1λ2

 = $ ζz
μ2λ1

 ≡ ζ(z)
λμ  = 

 

= l4xλ1
 l4xμ1
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 + 
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ζx
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 = ζx
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 ≡ ζ(x)
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= 3 
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). (38) 

 
In its turn, Eqs. (32)$(38) when substituting into 

Eq. (1)$(3) make it possible to readily obtain the exact 
vibration-rotation Hamiltonian of the ZXY3 molecule. 

The following fact should be noted.  If in the above 
considerations we set re = 0 (i.e., we assume that the 

positions of atoms 4 and 5 coincide, then the above-
mentioned molecule is transformed into the molecule of 

the type XY3 of the C3V symmetry.  In this case the 

above relationships are transformed into the form: 
 

a) re4x = 0,   re1x = $ 2 re2x = $ 2 re3x = r12/ 3, 
 

re4y = 0,   re1y = 0,   re3y = $ re2y = r12/2, 
 

re4z = h ⎝
⎛

⎠
⎞3m

M + 3m  ,  re1z = re2z = re3z = $ h ⎝
⎛

⎠
⎞M

M + 3m  , (39) 
 

where  
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⎨⎧

⎭
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4
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1/2

; 

 
b) for lNαλ (λ = 1, 2): 
 

l3yλ = $ l2yλ = $ 3 l2xλ = $ 3 l3xλ = 3 l1xλ/2 = l 
(1)
λ /2, 

 

l4xλ = l4yλ = l1yλ = 0, 
 

l4zλ = $ 3 m/M l 
(2)
λ ,   l1zλ = l2zλ = l3zλ = l 

(2)
λ . (40) 

 

The four parameters, l 
(1)
λ  and l 

(2)
λ , in Eq. (40) must 

satisfy three conditions 
 

l 
(1)
λ  l 

(1)
μ  + 3 ⎝

⎛
⎠
⎞M + 3m

M  l 
(1)
λ  l 

(1)
μ  = δλμ, (41) 

 

where λ, μ = 1, 2.  The equalities (40)$(41) determine 
the parameters lNαλ(λ = 1,2) as functions of one 

arbitrary parameter. 
 
c) for lNαλs (λ = 3, 4, s = 1, 2): 

 

l4xλ2
 = l1xλ2

 = 0, l2xλ2
 = $ l3xλ2

 = 1/3 (l1xλ1
 $ l2xλ1

), 
 

l3xλ1
 = l2xλ1

, l4xλ1
 = l4yλ2

 = $ m/M (l1xλ1
 + 2l2xλ1

), 
 

3l1yλ2
 = 4l2xλ1

 $ l1xλ1
,   

 

3 l2yλ1
 = $ 3 l3yλ1

 = l1xλ1
 $ l2xλ1

, 
 

l4yλ1
 = l1yλ1

 = 0,   3l2yλ2
 = 3l3yλ2

 = 2l1xλ1
 + l2xλ1

, 
 

l4zλ1
 = l4zλ2

 = l1zλ2
 = 0, 

 

2l2zλ1
 = 2l3zλ1

 = 2l2zλ2
 = $ 2l3zλ2

 = 
 

= $ 3 l1zλ1
 = 2h/r12 (l1xλ1

 2l2xλ1
). (42) 

 

Similar to Eq. (40), four parameters, l1xλ1 and l2xλ2
 

(λ = 3, 4), cannot be determined from Eq. (42), 
however, they must satisfy the orthogonality conditions 

 

l21xλ1
 + 2 l22xλ1

 + l 
2
4xλ1

 + 
2
3 (l1xλ1

 $ l2xλ1
)2

 + 6l 
2
2zλ1

 = 1; (43) 

 

∑     
Nα

 lNα31 lNα41 = 0. (44) 
 

As a result, only one parameter remains arbitrary. 
For the equilibrium moments of inertia, Coriolis 

and vibration-rotation parameters, we have: 
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a) Ie
xx = Ie

yy = 
mM ρe

2

M + 3m ⎣
⎡

⎦
⎤3 + 2 sin2αe ⎝

⎛
⎠
⎞3m

M  $ 1  , 

 

Ie
zz = 4m ρ2

e sin
2αe ; (45) 

 
b) for λ = 1, 2: 
 

axx
λ  = ayy

λ  = m (r12l 
(1)
λ  $ 6h l 

(2)
λ ), azz

λ  = 2 m r12 l 
(1)
λ  (46) 

 

and for λ = 3, 4: 
 

axx
λ1 = $ ayy

λ1 = $ axy
λ2 = $ ayx

λ2 ≡ a
xx
λ  = $ 2 m r12 l2yλ1 , 

 

axz
λ1 = azx

λ1 = ayz
λ2 = azy

λ2 ≡ a
xz
λ  = + 2 3m r12 l2zλ1 ; (47) 

 
c) for λ = 1, 2 and μ = 3, 4: 
 

ζy
λμ1 = $ ζx

λμ2 = $ ζy
μ1λ = ζx

μ2λ ≡ ζλμ = l 
(1)
λ  3 l2zμ1 + 

 

+ l 
(2)
λ  {l1yμ2 + 2l2yμ2 $ 3 m/M l4xμ1}, (48) 

 

for λ, μ = 3, 4: 
 

ζz
λ1μ2 = $ ζz

λ2μ1 = ζz
μ1λ2 = $ ζz

μ2λ1 ≡ ζ
(z)
λμ  = 

 

= l4xλ1 l4xμ1 $ l1xλ1 l1xμ1 + 2 {l1xλ1 l2xμ1 + l2xλ1 l1xμ1}, (49) 
 

ζ
x
3142 = $ ζ

x
4231 = $ ζ

x
4132 = ζ

x
3241 = ζ

y
3141 = $ ζ

y
4131 = ζ

y
4232 = 

 

= $ ζ
y
3242 ≡ ζ

(x)
34  = (2 3 h/r12 )(l1x31 l2x41 $ l2x31 l1x41).  

(50) 
 

 

The above relationships determine completely the 
vibration-rotation Hamiltonians of the molecules ZXY3 

and XY3 of the symmetry group C3V. 
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