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The dependence of all the values comprising an exact vibration-rotation
Hamiltonian on the structural and dynamic parameters of a molecule is obtained in
an explicit form for the axially symmetric molecules of ZXY3 and XY3 type.

Knowledge of a correct vibration-rotation
Hamiltonian of a molecule is very important for solving
almost any problem of vibration-rotation spectroscopy
of molecules. In the general case for a normal (i.e.,
nonlinear with the vibrations of only small amplitude)
molecule such a Hamiltonian is well known!™3:
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In Eq. (1) o, and k., are the harmonic
frequencies and anharmonicity constants; J, and G, are

the operators of the components of the total and
vibrational angular momenta, respectively; the third
term in Eq. (1) is a small operator depending on
vibrational coordinates g,, which is a small addition to

the potential function and, as a rule, it is not
considered; G, and p,, can be represented as
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In this case the equilibrium rotational constants By, the

Coriolis constants Qg”, and the parameters agﬁ depend
only on the parameters of equilibrium configuration of

the molecule 7y, which can be expressed via the
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equilibrium bond lengths and the angles between them,
nuclear masses, and transformation coefficients [y,;:
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In Egs. (4)—(7) al=0B=y. The
parameters 7y, can be

equilibrium
determined from the
relationships

X my o = 0, X mN "o Tnp =0 for a=p. (8)

To determine the constants [y, one should use the

Eckart conditions
Z 7’}11/2 INap. =0, (%)

ZmN

and the conditions of orthogonality

(Unay. TNp ~ Inpa TNe) =0 (10)
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as well as the conditions for second derivatives of the
potential function

Wiy = (8°V /8q; 8q,) 4= = 0. (12)

However, since in the general case the potential
function is unknown, it is appropriate to use the
symmetry properties of a molecule. Then, if the
vibrational coordinates ¢, and q, are transformed by
different irreducible representations of the molecule
symmetry group, the relations (12) are fulfilled
identically. However, if ¢, and q, have the same

symmetry, the symmetry properties cannot already be
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used for deriving the relationships of Eq. (12) type. As
a consequence, the values of [y, can be determined

only as functions of some arbitrary parameters. One
can show that in the general case the number of these
parameters is equal to the number of different pairs of
vibrational coordinates of the same symmetry.

Since in practical applications the form of all the
parameters entering into the Hamiltonian or, as
minimum, the possible relationships between them
should be known, in this paper the problem has been
formulated to determine the parameters in Eqs. (2)—(7)
for a comprehensive investigation interesting from the
standpoint of analysis of different intramolecular effects
and interactions in the class of molecules of ZXYj3 type
of C3y symmetry.

FIG.1. Positions of axes and nuclei of ZXY3 molecule
of Csy symmetry.

Having recognized that all the values entering into
Eqgs. (2)=(7) are the functions of the parameters [y,

and rl\?q, first of all, it is necessary to determine these

parameters from  Egs. (8)—(11) and symmetry
properties of the molecule. Solution of Eq. (8) (see the
positions of nuclei and coordinate axes in the figure)
gives:

P =75,=0, r{,=—215,=—-2r3, = 2p, sin(xe/\lg, (13)

rzy = rgy =0, r?y =0, ng =- 7551 = Ppe sina, (14)

o 3mh — Ms 7, e Myret3m(re+h)
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o R o My h+ Ms (r. + h)
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4 1/2
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As a consequence, the equilibrium moments of inertia
I¢ are of the form:
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IE=T15= GBm+ My +M3) 2 3m[Myh + Ms (o + D] +
+ My Bmh — Msr)> + Ms [Myre + 3m (ro + ]2 +

+ 2mp? sin’o; (18)
IS = 4m pg sinzac. (19)

Solution of Egs. (9)—(11) gives the following
relationships for [, parameters:

a) for A = 1, 2, 3 (nondegenerate vibrations):

g, =~ by, = ~\[3 s, = ~\Bly, =Bl 2= 11" /2,

(20)
L = I5:. = 0,
Lign, = Isyp, = liyn = 0, 1)
L =10, i = Ly = Igy = 132, (22)
M, \1/2 . 1/2 .
152x=—(ﬁ§) 157 —3(1\%) 12 (23)

Besides, the following relationships must hold:
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where A, p=1, 2, 3. Equations (20)—(24) define the
parameters Iy, as functions of three parameters, which

can be determined from the conditions (12).
(b) for A = 4, 5, 6 (degenerate vibrations):

Uy = lagag = Isypy = 0, Liaay = Ly = Isiny = 0,

Lizng = Isang = lany = lizay = I, = 0, (25)

Ly = 3y (26)
1

Ly =3 G gy — liay), 27

1
by = lagny = = I3y = —l3an, = % oy = boany),  (28)
1
Iayng = lagpy =3 2 Ly + o)), (29)
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The relevant conditions of orthonormality should be
added to Eqgs. (25)—(31).

It should be noted that the use of Egs. (20)—(31) in
the general case results in rather complicated solutions.
In any case, the six parameters [y, (three for the

nondegenerate vibrations with A =1, 2, 3 and three for

the degenerate ones with A = 4, 5, 6) remain arbitrary.
The relationships (20)—(31) can then be used for

the determination of Coriolis Q%u and vibration-rotation

agﬁ parameters. One can show that after substitution

of Egs. (20)—(31) into Eqs. (4)—(6) and a series of
transformations the following relations are valid:

a) forr=1, 2, 3:

_ d%y _ V_ (2pe 51110‘6 l -6 (7 + h) 1(2)) _

—2[My e 157, (32)
a’ =4 \lm pe sina 17 (33)
for A =4, 5, 6:

= %\/7_” 7oy Uiy = Loy, (34)
@ =@y =dy = ah=a = —12\mry by (35)

b) forA=1,2, 3 and p =4, 5, 6:
_ _ _ _ (D
CMH - C;{HZ Cuﬁ» C’ﬁgk = C}Lu - l?& \/§ lZZp.1 +
U2 (g, + 2 by — 3 (m /M"Y 2 15,0 +

D gy — My /MDY 15,00 (36)

c) for A, pn=4, 5, 6:

G =~ Ghane = Gra =~ Gy = G =
= Lpony Laapy + sy By = Dng D
+ 2wy by T Doy L) (37)
G = G =~ G =~ G = G =
i
=43 gy Uy Loy = Doany L) (38)

In its turn, Egs. (32)—(38) when substituting into
Eq. (1)—(3) make it possible to readily obtain the exact
vibration-rotation Hamiltonian of the ZXY; molecule.

The following fact should be noted. If in the above
considerations we set r, =0 (i.e., we assume that the
positions of atoms 4 and 5 coincide, then the above-
mentioned molecule is transformed into the molecule of
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the type XY; of the Cjy, symmetry. In this case the

above relationships are transformed into the form:

a) er =0, r?x ==2 rgx ==2 rgx = 712/\/§r
rﬁy:O, rffy: 0, rgy:—rgy: 712/ 2,

3m M
722=h(—M+3m , r?z=r§2=r§2=—h(M+3m) , (39)

where

4 9 1/2
712 = 2 pe Sinae; 1 = pe {1 -3 sin (xc} ;
b) fOI' lN(xk (7& = 1, 2)2

I3y, == by = ~\[3 by, = ~\B I3 =\B 1.5, 2= 11" /2,
lLar = lagn. = l1yp. = 0,

L. ==3\m/MI?, 1, =loy =lsy =112, (40)

The four parameters, (1) and 1(2), in Eq. (40) must

satisfy three conditions
e M+ 3m\ ., a
z§>lﬁ)+3( 7 )l§>lﬁ)=zsw, (41)

where A, p =1, 2. The equalities (40)—(41) determine

the parameters [y, (A= 1,2) as functions of one

arbitrary parameter.

c) for Iy, (A=3,4,s=1,2):

I3, = \1/3 Uy = b)),
—~m/M (i, + 2D,

Liny = lary = 0, boypy =
I3ong = loxngs Laony = lagny =
Bliyny = 4oy = Ly

A3 loyn, = =B Iy, = Ly — by,

Ligng = liyay = 0, Bloya, = Bl = 2l + lownys

Ligy = iy = lizpy = 0,
2y, = 235, = 2, =~ 23, =
= =3 Ly, = 20/ 11y (i, 250 (42)

Similar to Eq. (40), four parameters, 11“1 and l2xx2

(L=3, 4), cannot be determined from Eq. (42),
however, they must satisfy the orthogonality conditions

2 2 2 2, 12
lmM + 20509, + Uiy +3 Uiy — )" T 6125, =15 (43)

ZNu INa31 Inast = 0. (44)

As a result, only one parameter remains arbitrary.
For the equilibrium moments of inertia, Coriolis
and vibration-rotation parameters, we have:
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2

mM . 3m
a) Iy, =1y, = M_+f’%;|:3 + 2 sin20, (ﬁ - 1)} ,

15, = 4m p? sin’o ; (45)
b) forx =1, 2:

a= a]{y:\/r_n (rul%n— 6h l&Z)),aiZZZ mryy l§1) (46)
and for A = 3, 4:

Gy =@ =-ay=—ah=a ==2\mrpby,
g =ay=as=a=a’=+2\3mryly,y; (47

c¢)fora=1,2and p =3, 4:

C%m =T C’i}ﬁ =T Cﬁm = Cﬁzx =G, = Zi” \/5 lyzg +

+ 152 {ligpa + 2lyyp2 = 3Nm/ M gy}, (48)
for A, u =3, 4:

Cimz =T Cim = Cim == Cim = Cﬁi) =
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= Lot Lot = Lot Dt + 2 {lint Lot + oot L)y (49)
C3142 =~ Ca231 =~ Ca132 = C3241 = C3141= —C4131 = Cho32 =

(x)
== =G5 = Q3 h /79 Uiast bagat — bast lear)-
(50)

The above relationships determine completely the
vibration-rotation Hamiltonians of the molecules ZXY

and XY of the symmetry group Cyy,.
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