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The convergence of partial wave amplitudes of Mie’s series is considered for expanded plasma 

spheres of microwave and optical discharge. Asymptotic approximations for simultaneous growth of 
the mode index and diffraction parameter, as well as the table of criteria for a choice of optimal 
calculation algorithm are presented. 

 
Propagation of high-power super-high frequency 

(SHF) and laser radiation in an aerosol medium is 
accompanied by an emergence of plasma micro-
spheres (plasmoids) of the optical breakdown (OB) 
at the cost of photoionozation of atoms and 
molecules.1 Optical properties of plasmoids are 
defined by their form, spatial distribution of the 
complex index of diffraction, and the absorption 
coefficient at a wavelength of the laser or SHW 
pumping, initiating the breakdown plasmoid 
formation. The expansion of the breakdown plasma 
around an aerosol particle is due to generation of the 
light-detonation waves at the cost of high 
concentration of electromagnetic fields in the aerosol 
particle’s volume and surface layer.2 

The formation of the detonation wave in the OB 
plasma around some seed particle has several time-
sequential steps, at which spherical asymmetry of the 
electron distribution concentration and the 
homogeneity of the OB plasma diffractive index are 
observed.3,4 Moreover, a possibility of such modes of 
the plasmoid development was earlier shown,1,3,4 at 
which optical properties of the seed particle simulate 
the homogeneous plasma sphere with a complex index 

of refraction 1.m <  

By the numerical simulating methods, for 
absorbing plasma spheres in the laser radiation field, 
the scattering phase functions and distributions of 
electromagnetic field intensity inside a plasmoid were 
obtained1 at a pumping wavelength of 1.06 μm, 
diffraction parameters of up to 22, and the complex 
diffractive index m = 0.7 – i0.47. 

When studying the physical nature of 
sonoluminescence, the mathematical model  
of scattering a plane electromagnetic wave by 
oscillating air bubbles and a plasmoid, formed under 
impact of periodic shot wave in water to determine 
the time dependence of the bubble radius and the 
diffractive index is used,5,6 where optical properties 
of the bubbles, such as the intensity and polarization 
characteristics for radius sizes in a range 15–30 μm at 
a pumping wavelength 0.55 μm and refractive index 

between 0.3 and 0.9 were considered without 
accounting for absorption. 

Electromagnetic wave distribution inside  
and outside a sphere is known from the Mie  
theory.7 Difficulties in computing light-scattering 
characteristics at large diffraction parameters 

( 60,ρ ≥  2 / ,aρ = π λ  where λ is the incident radiation 

wavelength, a is the plasmoid radius) and complex 
indices of refraction have been marked in Refs. 7 and 
8. The difficulties concern of the fact that the correct 
computation requires the accounting for a large 
number of partial wave amplitudes, composing the 
series in the Mie theory. Therefore, it is necessary to 
consider the convergence of partial wave amplitudes 
in a given range, since basic computations of the 
extinction and the efficient absorption coefficient are 
realized in the form of a sequence of Riccati–Bessel 
functions of first (FRB1) and third (FRB3) kinds 
with a complex argument calculated by recurrent 
algorithms.9,10 

The recurrent formulae were first proposed for 
dealing with the partial wave convergence in Ref. 11, 
where Fock’s type asymptotics were used for building 
the control grid as well. With the use of the 
asymptotic representations, the grid of values was 
build for FRB1 and FRB3 for an intermediate range 
of the diffraction parameter in the region, where 
approximations of geometric optics are not yet work 
Rayleigh and the approximation is no longer 
applicable. In this connection, it seems to be 
reasonable to obtain estimates for partial wave 
amplitudes for plasmoid and to show correctly their 
convergence in case of extending plasmoid and 
oscillating air bubbles in a liquid with complex index 
of refraction within the intermediate range of the 
diffraction parameter.  

Using the asymptotic formulae,12 it is possible 
to show the convergence of partial wave amplitudes 
for a large extending plasmoid. In the convenient for 
calculation form, we have13:  
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where D
n(ρ) and Cn(ρ) are logarithmic derivatives of 

FRB1 and FRB3, respectively, of the form14:  
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In their turn, FRB1 and FRB3 are8  
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When calculating the FRB1 and FRB3 
derivatives through the Bessel (5) and Hunkel (6) 
functions of second type, as well as their derivatives 
of the form12:  
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where Γ(n + 1/2) is gamma-function, we obtain for 
Eqs. (3) and (4)  
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Using Eqs. (7) and (8) for calculation of FRB1 and 
FRB3 ratio, write for partial amplitudes  
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The numerator in Eq. 2 at the cost of 
asymptotic expressions for logarithmic derivatives of 
FRB1 and FRB2 becomes equal to zero, 
consequently, bn = 0 and the limit of the partial 
amplitude an at n → ∞ remains to be considered. Note 
that equation (7) and (8) are found under the 
condition  

 1/2( 3/2) ,c nρ ≤ +   

n → ∞, ρ → ∞, c < 1 is a constant.12 
Considering the limit of a

n together with the 
above condition, we obtain that the exponent is 
bounded at growing n, therefore, the tending to zero 
takes place at the cost of growing gamma-function. 
At a proper choice of the majorant, it is easily seen 
that the sum of squares of modules of the partial 
wave amplitudes is convergent as well.  

This convergence for large plasmoids takes place 

at the complex index of refraction 1.m ≤  Note that 

at 1m >  equations (7) and (8) do not work and can 

be changed by the corresponding Fock or Debay 
approximations.11,17 Thus, the application of the 
widely known calculation algorithms9,10 in a given 
range of parameters is also correct. In test estimates 
of the amplitudes, when calculative instability can 
appear at the cost of accumulation of errors, 
equations (7) and (8) are applicable along with Fock’s 
type asymptotics.11  

The recommended methods for calculation of 
FRB1 and FRB3 are presented in Table. They can be 
used in composing algorithms for calculating light 
scattering characteristics of different objects.  

It should be noted that the asymptotic methods 
can be widely applicable to bodies of any regular 
shape, because such light scattering characteristics as 
extinction, scattering, and absorption coefficients are 
series of proper functions for problems of the 
electromagnetic wave diffraction, which mostly are 
reduced to solving the Bessel equation. In this case 
the partial wave amplitudes, obtainable from the 
limiting conditions on the rotation body surface, 
should be known. 

 

Table. Estimate parameters of scattering spheres and recommended methods for calculating FBR1  
and FBR3 in order to build optimal algorithms for computing light scattering characteristics16 

Scattering object 
Incident 
radiation 

wavelength λ 

Radius a 
of the 

sphere, μm 

Refractive index n of 
the sphere matter  

Diffraction 
parameter 
ρ=2πa/λ 

Inhomogeneity 
parameter of 
the field mρ  

 

Recommended 
method for 

calculation of  
FBR1 and FBR3  

Spherical 
particle of 
KTaO3 (SrTiO3) 3 cm 500 

70.7 (158.1) 
At T = 4.2 K in vapor

of liquid helium 0.1 7.01 (15.8) 

Asymptotical  
(by Debay 

asymptotics)17 

Water drop 1.06 μm 10 1.319–i4 ⋅ 10–6 62.8 82.8 
Miller–Olver 
(recurrent)14,15 

OB plasmoid  10.6 μm 200 0.5–i5 ⋅ 10–2 125.6 62.7 Asymptotical12 
Air bubble in 
water 1.06 μm 15 0.7–i ⋅ 10–6 88.7 62.2 

Miller–Olver 
(recurrent)14,15 

UHF breakdown 
plasmoid 3 cm 200 0.3–i ⋅ 10–2 0.04 0.013 Asymptotical12,17 



200   Atmos. Oceanic Opt.  /March  2008/  Vol. 21,  No. 3 M.V. Zhuravlev 
 

Application of the constructed asymptotics and 
calculation algorithms is of interest for development 
of methods of screening laser and high-frequency 
radiation by plasmoids.  
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