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Two inverse problems of optics are examined by the convex analysis methods: 
reconstruction of a phase component of an optical signal from the known module 
and from the module of its Fourier transform within a given region as well as the 
reconstruction of incoherent source from its noise disturbed image.  The solution of 
each problem is reduced to seeking a boundary point of a convex set with a given 
extreme property. 

 

Reconstruction of an optical signal from its image 
is related to solution of ill-posed problems.  Restriction 
of the solution set is one of the methods of its 
regularization.  The methods of seeking solutions of 
inverse problems on a given convex sets was found to 
be efficient and many papers develop this approach.  
For instance, among them is a paper by D.C. Youla1 in 
which the problem of signal reconstruction is 
considered as a problem of seeking the intersection 
point of given convex sets and is solved by an iterative 
method of a successive projection onto the sets.  An 
iterative algorithm of finding the radiation source from 
its noise disturbed image under the condition that the 
values of the radiant flux and noise are within limits of 
the given convex sets is considered in Ref. 2.  In the 
present paper we consider the method of signal 
reconstruction on a convex set with a given extremal 
property.  This can be expressed in a dual form by the 
condition that the given point cannot be separated from 
the convex set by a hyperplane.  The dual condition 
enables one to study the properties of the solution 
sought and to construct approximate methods of finding 
it.  In particular, Tikhonov’s  regularization3 of a 
solution by finding the solution with the minimum 
norm when the value of the residual norm is given can 
be considered as a problem of finding a given boundary 
point on a convex set. 

 

RECONSTRUCTION OF THE PUPIL 
FUNCTION PHASE FROM A KNOWN POINT 

SCATTERING FUNCTION IN A GIVEN DOMAIN 
 

The pupil function G(ξ, η) = A(ξ, η)exp(iΦ(ξ, η)) 
has its domain Ω in the plane 0ξη.  The amplitude 
A(ξ, η) and the point scattering function 
h(x, y) = ⏐g(x, y)⏐2 in the domain ω of the image 
plane 0xy, where g = F(G) is the Fourier transform of 
G, are assumed to be known.  The phase function 
Φ(ξ, η) is to be found under these conditions.  By a 
solution of the phase problem we mean finding of a 
function satisfying the condition 

 

⏐F(G)⏐2 = h(x, y)   for  (x ,y) ∈ ω. (1) 
 

Let us set two norms on the set of functions in the 
0xy plane 

 

 ⏐⏐g ⏐⏐ 2= ⌡⌠
  $∞

    ∞
 

 ⌡⌠
 

 

⏐g(x, y)⏐2dx dy 

 
and 
 
J(g) = [( ⏐⏐g ⏐⏐2/p)2 + ( ⏐⏐g ⏐⏐2)2]1/2, 

 
where the semi-norms 
 

( ⏐⏐g ⏐⏐ 2/p)2/ p = ⌡⌠
   ω

 

 ⌡⌠
 

 

⏐g(x, y)⏐2/p dμ(x, y), 

( ⏐⏐g ⏐⏐ 2)2 = ⌡⌠
   ω

 

 ⌡⌠
 

 

⏐g(x, y)⏐2 dx dy, 

ω + ω′ = 0xy,   2/p > 1,  p$1 + q$1 =1, 
 

dμ = ρ(x, y)dx dy,  ρ = h1/q(x, y)/M1/q, 

M = ⌡⌠
   ω

 

 ⌡⌠
 

 

h(x, y)dx dy. 

 
The following inequality that can easily be 

checked is very important for the below discussion 
 
 ⏐⏐g ⏐⏐  ≥ J(g). (2) 
 

L e m m a  1 .  The inequality (2) becomes an 
equality if and only if the functions g satisfy the 
condition 

 
⏐g(x, y)⏐2 = ch(x, y),  c > 0,   (x, y) ∈ ω, (3) 
 

Sufficiency of the condition (3) can be proved 
directly by substitution into the inequality (2).  
Necessity: By the definition of the norms  ⏐⏐g ⏐⏐  and J(g)  
the inequality (2) becomes an equality for functions g 
for which 
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min
g

 

⎣
⎢
⎡ ⌡⌠
   ω

 

 ⌡⌠
 

 

⏐g(x, y)⏐2dx dy $  

 

$ 

⎦
⎥
⎤

⎝
⎜
⎛

⎠
⎟
⎞⌡⌠

   ω

 

 ⌡⌠
 

 

 ⏐g(x, y)⏐2/p dμ(x, y)
p

 = 0. 

 

Calculating the derivative of the functional and 
equating it to zero we find that 

 

2⏐g⏐ $ p( ⏐⏐g ⏐⏐2/p)
2/q 2p$1 ⏐⏐g ⏐⏐2/p$1 ρ = 0 

 

Setting g ≠ 0 we obtain that ⏐g(x, y)⏐2 = 
= h(x, y)( ⏐⏐g ⏐⏐ 2/p)2/M what is equivalent to Eq. (3). 

Let B1 and B2 denote two Banach function spaces 
on the plane 0xy with the norms  ⏐⏐g ⏐⏐  and J(g), 
respectively.  The inequality (2) implies that B1 ⊂ B2.  
For the function g = F(G) ∈ B1 the Plancherel's 
equality is valid 

 

 ⏐⏐g ⏐⏐ 2 = ⌡⌠
   Ω

 

 ⌡⌠
 

 

⏐G(ξ, η)⏐2 dξ dη = 

 

= ⌡⌠
   Ω

 

 ⌡⌠
 

 

A2(ξ, η) dξ dη = l2, 

 

where the value l is known because the amplitude A is 
known. 

Let S1 and S2 be closed spheres of radius l in the 
spaces B1 and B2, ∂S1 and ∂S2 be their boundaries.  
From inequality (2) and Lemma 1 we conclude that 
S1 ⊂ S2 and ∂S1 ∩ ∂S2 ≠ ∅.  Thus the sphere S1 is an 
oblate formation inside the sphere S2 and it is extended 
in the direction of the boundary points at which the 
norm does not change under the identity transformation 
from the points of the space B1 into those of B2. 

Let us consider a closed limited set in B1 
(accessibility set):  

 

V = {g: g = F(G), ⏐G(ξ, η)⏐≤A(ξ, η)} ⊂ S1 ⊂ S2,  
 
for which the following lemma is valid. 

L e m m a  2 .   If the phase problem has a solution 
satisfying the condition (3), there exists a solution 
satisfying the condition (1); the condition 

 
V ∩ ∂S2 ≠ ∅ (4) 
 
is necessary.  If ω coincides with 0xy, then c = 1 in 
Eq. (3). 

Let us write the condition (4) in a dual form.  A 
linear functional λ from the conjugate space B*

2 can be 
defined by the equality 

 

λ(g) = ⌡⌠
   ω

 

 ⌡⌠
 

 

g(x, y)λ*(x, y)dμ(x, y) + 

 

+ ⌡⌠
   ω′

 

 ⌡⌠
 

 

g(x, y)λ*(x, y)dxdy, 

where asterisk denotes complex conjugation, and it has 
the norm 
 

(( ⏐⏐g ⏐⏐ 2/q′)2 + ( ⏐⏐g ⏐⏐2)2)1/2,   q′ + p = 2. 
 

The inclusion V ⊂ S2 is equivalent to the 
inequality 

 

max
g∈V

Reλ(g) ≤ max
g∈S2

Reλ(g) = l ⏐⏐λ ⏐⏐   for all  λ ∈ b*2, 

 

which is equivalent to the inequality 
 

sup
 ⏐⏐ λ ⏐⏐ =1

 max
g∈V

Reλ(g) ≤ l (5) 

 

because of its homogeneity.  For each g0 ∈ B2 the 
inequality Re λ(g) ≤  J(g)  ⏐⏐λ ⏐⏐ is valid for all λ, but 
there exists a unique (extremal) functional λ0 for which 
 ⏐⏐λ ⏐⏐ = 1 and Re λ0(g0) = λ0(g0) = J(g0) ⏐⏐λ0 ⏐⏐ = J(g0).  
The extremal functional of the function 
g = ⏐g(x, y)⏐exp(iϕ(x, y)) has the form 
 

λ(x, y) = J$1(g)( ⏐⏐g ⏐⏐ 2/p)2/q′⏐g(x, y)⏐q′/p exp(iϕ(x, y)) 
 

for (x, y) ∈ ω 
 

and 
 

λ(x, y) = J$1(g) ⏐g(x, y)⏐exp(iϕ(x, y)) 
 

for (x, y) ∈ ω′. 
 

Let g0 ∈ V ∩�∂S2 and λ0 be the extremal 
functional of g0, then 

 

Re λ0(g0) = J(g0) = l. (6) 
 

The expressions (5) and (6) imply that the 
function g ∈ V with the maximum norm J(g) = l is a 
solution of the extremal problem 

 

max
 ⏐⏐ λ ⏐⏐ =1

 max
g∈V

 Re λ(g) = l. (7) 

 

The expression λ(F(G)) = Λ(G) defines a linear 
functional Λ in the space L2 on the plane 0ξη.  Here 

Λ = F$1(λρ'), where ρ′ = ρ on ω and ρ′ = 1 on ω′.  If 
one introduces a set U = {G: ⏐G(ξ, η)⏐ ≤ Α(ξ, η)}, the 
equation (7) can be written in the form 

 

max
 ⏐⏐ λ ⏐⏐ =1

 max
G∈U

ReΛ(G) = l. (8) 

 

If λ0 and G0 make a solution to the problem (8) 

and Λ0 = F$1(λ0ρ′), then G0 satisfies the maximum 
condition 

 

Re Λ0(G0) = max
G∈U

 Re Λ0(G) =  

= ⌡⌠
   Ω

 ⌡⌠ A(ξ, η)Λ0(ξ, η)dξ dη , 

 

where 
 

G0 = A(ξ, η)Λ0(ξ, η)/⏐Λ0(ξ, η)⏐ . (9) 
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The function G0 satisfies the condition 

⏐G0(ξ, η)⏐ = Α(ξ, η) so it can be considered as a 
permissible pupil function; the condition (4) and, 

hence, (3) are fulfilled for it.  Moreover, if c = 1, G0 is 
the solution of the phase problem. 

 
METHODS OF CONSTRUCTING A 

MAXIMIZING SEQUENCE 
 
1. It is necessary to construct a maximizing 

sequence λk, k = 0, 1, 2,..., 
 

 ⏐⏐λk ⏐⏐  = 1,   f(λk) < f(λk+1),   lim
k→∞

 f(λk) = l. 

 

in the problem 
 

max
 ⏐⏐ λ ⏐⏐ =1

f(λ) = l, 

 

where 
 

f(λ) = max
g∈V

 Re λ(g), (10) 

 

Let Gk be a permissible pupil function, 
gk = F(Gk), λk be the extremal functional of  

gk, Λk = F$1(λkρ′), Gk+1 be a function satisfying  
the maximum condition (9) on λk and gk+1 = F(Gk+1), 
λk+1 be the extremal functional of gk+1.  The  
chain of inequalities J(gk) = Re λk (gk) ≤  f(λk) = 
= Re λk(gk+1) ≤ J(gk+1) = Reλk+1(gk+1) ≤ f(λk+1) is valid.  
If gk ≠ gk+1, the second inequality is strict due to the 
uniqueness of the extremal functional for g, so 
J(gk) < J(gk+1) and f(λk) < f(λk+1). Two cases are 
possible here: 1) λk is the maximizing sequence;  
2) gk = gk+1 for a certain k.  Moreover, if f(λk) = l, λk 
is the solution to the problem (10).  If f(λk) ≠ l, one 
should test new g ∈ V with a larger norm as compared 
with J(gk). 

2. Method of alternating projections.  Let g be a 
point and V be a closed set in B2.  A point g1 ∈ V is 
said to be a projection of g onto V if 

 

J(g1 $ g) = min
g′∈V

J(g′ $ g), (11) 

 

and is denoted by g1 = PV g, where PV denotes the 
operation of projection (11). 

In accordance with Lemma 2 the phase problem is 
reduced to seeking the point g ∈ V ∩ S2.  The sequence 
maximizing the norm is defined by the iterative relation 

 

gk ∈ V,   gk+1 = PV PS2 
gk,   k = 0, 1, 2, ..., 

PS2 
g = lg/J(g), (12) 

 

where PV g is the solution of the convex programming 
problem (11). 

The following three relationships 
 

J(PS2 
gk $ gk) ≥ J(PS2 

gk $ gk+1), (13) 
 

J(PS2 
gk) =J(PS2 

gk$ gk) +J(gk), 

J(PS2 
gk) ≤ J(PS2 

gk$ gk+1) +J(gk+1). 

 
are valid by definitions of the projection, operator PS2

, 

and the triangle axiom for norms.  From the 2nd and 
the 3rd relations we obtain that 
 
J(gk) + [J(PS2 

gk$ gk) $ J(PS2 
gk$ gk+1)] ≤ J(gk+1). (14) 

 
Two cases are possible: 

1. gk ≠ gk+1.  Then, because of the uniqueness of 
the projection in B2, there is a strict inequality in 
Eq. (13).  Taking this into account, we have 
J(gk) < J(gk+1) from the expression (14).  If J(gk) → l, 
the sequence (12) is maximizing. 

2. For a certain k gk = gk+1.  If J(gk) = l, gk is the 
solution.  Otherwise, gk is an intermediate "vertex" of 
the set V.  It is necessary to seek a new point gk+1 such 
that J(gk+1) > J(gk). 

 
RECONSTRUCTION OF AN INCOHERENT 

RADIATION SOURCE FROM A GIVEN POINT 
SCATTERING FUNCTION h(x, y; x0, y0) AND A 

NOISE DISTURBED IMAGE 
 
Let the distribution of the radiation source 

intensity and its noise disturbed image be described by 
the functions I0(x0, y0) and I(x, y).  It is necessary to 
reconstruct I0 in a domain E0 from a given I in a 
domain E ⊂ E0 and from a given function  
h(x, y; x0, y0). 

The functions considered here are connected by the 
superposition integral 

 

I(x, y) = ⌡⌠
   E0

 ⌡⌠ h(x, y; x0, y0) I0(x0, y0)dx0dv0 + z(x, y), 

 

(x, y) ∈ E, (15) 
 
where the function z(x, y) characterizes the noise 
influence and solution inaccuracy of the equation (15).  
We assume that I0 ∈ Lp0

(E0), and I, z ∈ Lp(E, μ),  

p0, p > 1.  The measure μ = μ(I) depends on I and 
reflects the purpose of the function z in a certain sense.  
A pair of functions I0 ∈ Lp0

(E0) and z ∈ Lp(E, μ) 

satisfying the equation (15) is said to be a solution of 
this equation.  Below the equation (15) will be written 
in the operator form I = hI0 + z. 

We choose the average intensity level I0av(x0, y0) 
so that the function u(x0, y0) has an arbitrary sign in 
the expression I0 = I0av + u. If we assume a = I $ hI0av, 
the equation (15) takes the form 

 
a = hu + z. (16) 
 

In order to restrict the set of possible solutions we 
introduce two convex closed and limited sets 
U ∈ Lp0

(E0) and Z ∈ Lp(E, μ) depending on I in the 

general case, 0 ∈ int Z.  A solution (u, z) is said to be 
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permissible if u ∈ αU and z ∈ δZ where α and δ are 
parameters enabling one to deform the sets.  By 
choosing the sets U and Z one can take into account 
information about the solution and noise, and make the 
solution unique and correct.  The problem of 
reconstructing the source is reduced to seeking a 
permissible solution of the equation (16). 

Let us consider the set V = {g: g = hu + z, 
u ∈ αU, z ∈ δZ} which is convex, closed, limited, and 
int V ≠ ∅.  The existence of a permissible solution to 
equation (16) means that a point a ∈ V or, in 
equivalent dual form, for all λ ∈ Lp(E, μ) the 
inequality 

 

λ(a) ≤ max
g∈V

 λ(g) = max
u∈αU

 u(h*λ) + max
z∈δZ

 λ(z). (17) 

 
is valid.  Here h* is the operator conjugate to h.  By 
choosing the parameters α0 and δ0 one can make the 
point a to be boundary for the set V.  Then an equality 
is achieved in inequality (17) at a  certain functional 
λ0.  Taking into account this fact and homogeneity of 
inequality (17) with respect to λ, one can write it in 
the form 
 

δ ≥ δ0 = max
p(λ)=1

{λ(a) $ R(α0, λ)}; (18) 

R(α, λ) = max
u∈αU

u(h*λ);   p(λ) = max
z∈Z

 λ(z). 

 

The condition (18) is necessary and sufficient for 
the existence of a permissible solution to equation (16) 

satisfying the condition u ∈ α0U, z ∈ δZ.  The 
connection between the solution of the variational 
problem and that of equation (16) yields the following 
proposition. 

P r o p o s i t i o n .  If λ0 and δ0 make a solution to 

the variational problem, the functions u0 and z0 
satisfying the maximum condition 

 

u0(h*λ0) = max
u∈α0U

u(h*λ0),   λ0 (z0) = max
z∈δ0Z

 λ0 (z), 

 

are the solution of equation (16). 
The condition for resolution of equation (16) 

written in the form (18) permits one to establish the 
conditions under which the solution of equation (16) 
has preset properties.  Suppose that a functional p(λ) is 
strictly convex.  For instance, we have such a 
functional if Z = Z1 = { ⏐⏐z ⏐⏐≤ 1}.  Let us introduce a 
generalized parameter B = {a, α},  ⏐⏐B ⏐⏐  =  ⏐⏐a ⏐⏐+⏐α⏐, 
such that the maximized functional in Eq. (18) depends 
on it. 

The properties of the solutions of the variational 
problem (18) and permissible solutions of equation (16) 
are defined by the following lemmas. 

L e m m a  1 . δ0(B) is a continuous function. 

L e m m a  2 .  If δ0 > 0, the variational problem 
(18) has a unique solution. 

Proof.  Suppose the contrary, i.e., let there exist 
two solutions λ1 and λ2.  Then the equalities 

δ0 = λi(a) $ R(α, λi), i = 1, 2, are valid for them.  

Summing these two equalities and taking into account 
that the functional R(α, λ1) is convex relative to λ, we 
obtain 

 
2δ0 ≤ (λ1 + λ2)(a) $ R(α, λ1 + λ2). (19) 
 
The left-hand side in inequality (19) is homogeneous 
with respect to λ and λ1 ≠ λ2; otherwise, the condition 

δ0 > 0 is broken.  Divide both sides of the inequality 
(19) by the number β = p(λ1+λ2) < p(λ1)+p(λ2)=  

 = 2: (2/β)δ0
 ≤ ((λ1+λ2)/β)(a) $ R(α, (λ1 + λ2)/β).  

Since 2/β >1 and λ = (λ1 + λ2)/β satisfies the 
condition p(λ) = 1, we come to a contradiction with 

the definition of δ0: δ0 < λ(a) $ R(α, λ). 
L e m m a  3 .  If the sequence of parameters Bi 

converges by norm to B′ and δ0(B′) > 0, the sequence of 
solutions of the variational problem (18) λ(Bi) has a 
subsequence slightly converging to λ(B′)'. 

Proof. The subsequence λ(Bi) belongs to a slightly 
compact set {p(λ) ≤ 1}.  It contains a subsequence 
λ(Bik) slightly converging to λ′.  Let us show that 
λ′ = λ0(B').  Suppose the contrary.  Then, the inequality 

 
[λ′(a) $ R(α, λ′)] < δ0(B′). (20) 
 
is valid according to Lemma 2.  The functional in 
Eqs. (18) is continuous and convex with respect to λ, 
so it is slightly semi-continuous from the above4; but 
then the inequality 

 

δ0(Bik) = [λik(aik) $ R(αik, λik)] = 
 

 [λik(aik) $ R(αik, λik)] $ [λik(a′) $ R(α′, λik)] + 
 

+ [λik(a′) $ R(α′, λik)] ≤ c ⏐⏐aik $ a′ ⏐⏐  $ [R(αik, λik) $ 
 

$ R(α′, λik)] + [λ′(a′) $ R(α′, λ′)] ≤ c ⏐⏐aik $ a′ ⏐⏐  + 
 

+ c1 ⏐⏐αik$ α′ ⏐⏐  + [λ′(a′) $ R(α′, λ′)], 
 

is valid.  Proceeding to the limit we come to 
contradiction with inequality (20) 
 

δ0(B′) ≤ [λ′(a′) $ R(α′, λ′)]. 
 

C o r o l l a r y  1.  Let Z = Z1.  Then the solution 
of the variational problem (18) λ0(B) continuously 
depends on B in the domain {B} where δ0(B) > 0.  If 
the maximum condition defines u as a continuous 
function of h*λ, then u continuously depends on B. 

Proof. Slight convergence of the subsequence λ(Bik) 

to λ0(B') under the condition  ⏐⏐λ(Bik) ⏐⏐  =  ⏐⏐λ0(B′) ⏐⏐ 
provides the convergence by norm.  But then the 
sequence λ(Bi) converges to λ0(B') by norm because Bi is 
an arbitrary sequence converging to B'. 

C o r o l l a r y  2.  Let h be a compact operator and 
the maximum condition define u as a continuous 
function of h*λ.  Then u continuously depends on B in 
the domain {B} where δ0(B) > 0. 
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Let us consider a maximizing sequence λi in the 
problem (18), functions ui defined by the maximum 
condition at λi, zi = a $ h*ui, and δi = minδ for 
which zi ∈ δZ.  Let the condition of maximum define 
u as continuous function of h*λ, then the following 
lemma is valid. 

L e m m a  4 . If Z = Z1, or h is a compact 
operator, the estimation made from two sides 

δi ≥ δ0 ≥ λi(a) $ R(α, λi), 
 

in which the limiting values tend to δ0 is valid in the 
domain {B} where δ0(B) > 0. 

The proofs of Lemma 1 and Lemma 4 are omitted 
since they are similar to those presented. 
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