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Algorithms for reconstructing the wave front and for compensating the phase 
distortions of the radiation field by means of a phase conjugate adaptive optical 
system which account for the measurement noise and errors in control with a phase 
corrector are developed in the framework of the statistical approach on the basis of the 
methods of calculus of variations and matrices. The phase distributions being 
reconstructed and compensated are calculated using the a priory information about the 
statistical characteristics of the wave front being measured, measurement noise, and 
errors of control. Equations have been obtained and studied for the Karhunen-Loeve 
orthogonal modes which guarantee the least error in compensating the phase 
distortions of the radiation field for the fixed number of modes realized by the phase 
corrector with the prescribed response functions without errors in their approximation. 
Results of calculations of the errors of reconstruction and compensation for the number 
of the measuring channels of a Hartmann sensor and of the actuators being equal to 3, 
7, and 19 are given and discussed depending on the intensity of measurement noise 
and errors of control.  

 

INTRODUCTION  

 

Algorithm for control with an executing device (phase 
corrector) of an adaptive optical system (AOS) determines 
the efficiency of compensation for the phase distortions 
(PD) of the radiation field and depends on the purpose and 
the performance figures of the AOS,1,2 on the character of 
the PD,1,3 on the methods of measuring, on the algorithms 
for data processing,1 and on the type of the employed phase 
corrector. The random (noise) and/or deterministic errors in 
estimating the magnitude of the PD being compensated and 
errors in realization of the controlling actions by the phase 
distortion corrector strongly affect the quality of 
compensation for the PD. The effect of noise can be 
decreased by optimizing the algorithm for control.1,4,5 In 
this case the magnitudes of controlling phase actions will 
depend on variance, correlation length, and other statistical 
characteristics of the PD and noise of the radiation field of 
the AOS. Therefore, implementing the algorithms of this 
type, it is necessary to carry out either direct measurements 
of these characteristics or to rely on the a priori known 
information about them.  

This classification distinguishes between the zonal and 
modal algorithms for control of the AOS.1 Controlling 
action for the algorithms of the first type are found and 
realized for each executing channel (actuator) of the phase 
corrector separately, while in the case of algorithms of the 
second type –– for each group of actuators corresponding to 
the definite line combinations (modes) of the response 
functions of the actuators. The modal algorithms are 
preferable for the slow AOS, which have no time to 
organize the control of each actuator separately, or for the 
search AOS, in the case of independent responses of the 
goal function of the AOS on the actions of different modes 
(i.e., the orthogonality of modes is employed).  

In connection with this, the problem of search for the 
Karhunen––Loeve modes6,7 realized by the phase corrector 
without the error in their approximation, i.e., which can be 
represented in the basis of the response functions of the 
actuator and ensures the fastest decrease of the error in 
compensating the PD of the radiation field depending on 
the number of modes employed in the AOS, is actual.  

In this paper we study the algorithms for control with 
the phase corrector (based on the deformable mirror) of the 
phase conjugate AOS, ensuring the minimum error in 
compensating the PD with an account of the noise of the 
PD measurements and of the errors in the realization of the 
actions of control exerted by the phase corrector. We also 
consider the problem of reconstructing the PD from the 
measurements made by means of the wave front detector in 
the presence of measurement noise with the minimum 
residual error.  

 
FORMULATION OF THE PROBLEM AND STARTING 

RELATIONS  

 
Let the PD of the radiation field of the AOS being 

compensated be described by the random function ϕ(p, t) 
with the well–known statistics. As a result of measurement 
with the help of the wave front sensor, the set of readings is 
entered into the AOS, we represent them in the form  

 

Mm = Sm + Nam + Npm , (1) 
 

where Mm = M(ξm), ξm = (pi, tj, k); pi are the radius–vectors 

of the points of measurements, i = 1, 2. . .; tj is the time of 

measurement, j = 1, 2. . .; k is the serial number of the 
characteristic of the wave front being measured (for example, 
when k = 1, we measure the local tilts of the wave front along 
the x axis, while when k = 2 – along the y axis); the vectors  
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ξm are enumerated from m = 1 to L according to a definite 

rule; L is the total number of spatio–temporal readings; the 
quantity Sm corresponds to the function ϕ, and the quantity 

Npm corresponds to the function ϕp(p, t) describing the 

random PD of the radiation field in the receiving optical 
channel of the AOS, which are absent in its transmitting 
channel and cannot be eliminated from Mm by means of the 

preliminary measurements; and the vector Nam takes into 

account the noise of the sensor of the PD of the radiation field 
(for example, the electronic noise of the radiation detector). 
The character of the noise Nam and the dependence of the 

readings Mm on the functions ϕ and ϕp are specified taking 

into account the type of the wave front sensor.  
In the phase conjugate AOS controlled by the zonal 

algorithm we represent the phase distribution compensating 
the PD at the moment t and being realized with the help of 
the phase corrector, in the form of the linear combination of 
the response functions Rn of the phase corrector 

 

ϕc(p, t) = ∑
1

L

 (Rn(p) + δRn(p)) un(t) ; (2) 

 

un = (1 + νn) ∑
1

L

 Hnm Mm , (3) 

 

where un(t) are the controlling actions applied at the actuators 

of the phase corrector with the serial numbers n = 1, 2. . . N, 
νn is the error in realization of the controlling action due to 

the noise in the electron unit intended for control with the 
phase corrector, Hnm are the deterministic weighting 

coefficients (n = 1, . . ., N, m = 1, . . ., L), which can be 
used to realize un(t) with an account of the spatio–temporal 

statistical characteristics of the PD, Rn is the response 

function of the phase corrector on the action of the nth 
actuator, and δRn is the error in realization of the response 

function by the phase corrector of the AOS.  
Thus, the problem of finding the algorithm for control 

of the AOS is reduced to the determination of the 
coefficients Hnm, which guarantee extremum of the goal 

function of the AOS (which is understood, for example, as 
obtaining the nearly diffraction–limited beam or 
maximization of axial intensity of the beam and so on), 
assuming that we have already known the mean statistical 
values of the quantities νn, δRn, Sm, Npm, Nam, and ϕ(p, t) 

and their products.  
When implementing the modal algorithm for 

compensating the PD, each mode Fn(p, t) must be realized by 

the phase corrector without approximation error, therefore  
 

Fn(p, t) = ∑ Anm(t) (Rm(p) + δRm) (1 + νm) , (4) 

 

where the sought–after weighting coefficients Anm, forming 

the matrix A = ⏐Anm⏐, determine the contribution of the 

response function of the phase corrector to the action of the 
mth actuator when forming mode number n. The weighting 
coefficients Anm are found from the conditions of 

orthogonality of the modes and of the fastest decrease of the 
error in the compensating the PD depending on the number 
of modes being used for compensation. The compensating 
phase distribution realized by the corrector in the course of 
modal control, is represented as a linear combination of the 
modes Fm(p, t)  

ϕc(p, t) = ∑
1

L

 υm Fm(p, t) , (5) 

 

where the weighting coefficients υm form the matrix 

V = ⏐υn⏐ of the controlling modal actions. Since to control 

the AOS by the modal and zonal algorithms, the functions 
ϕc(p, t) compensating the PD are formed as a superposition 

of the same response functions of the phase corrector, the 
matrices of controlling actions in these algorithms are 
directly related  

 

V = A–THM , (6) 
 

where ⏐. . .⏐–T = (⏐. . .⏐–1)T, ⏐. . .⏐T is the transposed 
matrix, ⏐. . .⏐–1 is the inverse matrix, M = ⏐Mn⏐ is the 

column matrix of the readings of the wave front sensor 
defined by Eq. (1), and H is the matrix of the weighting 
coefficients, related with the magnitude of the controlling 
actions of the phase corrector when implementing the zonal 
control algorithm given by Eqs. (2) and (3).  

We disregard the errors of control with the AOS phase 
corrector when solving the problem of reconstructing the 
PD. Let us represent the PD being reconstructed as a sum  

 

ϕc(p, t) = ∑
1

L

 Mm Rm(p, t) , (7) 

 

where the weighting coefficients, i.e., the functions 
Rm(p, t) must be determined from the condition of 

extremum of the goal function of the AOS. The functions 
Rm(p, t) can be considered to be the best response functions 

for the corrector of the AOS in the sense that in the case in 
which the response functions of the corrector coincide with 
the functions Rm(p, t) (or their linear combinations), the 

theoretical extremum of the goal function of the AOS can 
be obtained in the absence of the error of control with the 
phase corrector.  

For the performance figures of the AOS, we take the 
quantities of the mean–square residiual errors in 
compensating for the PD δ

ϕ

2 and its gradient δg
2. They define 

the Strehl factor and divergence of the beam formed by the 
AOS1,2 and are calculated according to the formulas  

 

δ
ϕ

2 = <ϕ – ϕc – <ϕ – ϕc>>2 ; (8) 
 

δg
2 = <∇ϕ – ∇ϕc>

2  , (9) 

 

where a bar above the formula denotes statistical averaging 
over the realizations, the angular brackets denote spatial 
averaging according to the rule:  
 

<U> = ⌡⌠ A(p) U(p)dp/⌡⌠ A(p)dp,  

in the case of Eq. (8) and according to the rule  

<∇U> = ⌡⌠ A2(p) (∇U(p))dp/⌡⌠ A2(p)dp in the case of 

Eq. (9) (U(p) is an arbitrary function), A(p) is the amplitude 
distribution of the field in the beam, and ∇ is the gradient 
operator, which acts along the transverse coordinates of the 
beam. Algorithms for reconstructing and compensating the PD 
must minimize expressions (8) and (9).  

Relations (1) – (9) are the starting ones for finding 
the zonal and modal algorithms for control of the phase 
conjugate AOS and algorithm for reconstructing the PD.  



172   Atmos. Oceanic Opt.  /March  1992/  Vol. 5,  No. 3 E. A. Ivanova et al. 
 

 

ALGORITHM FOR RECONSTRUCTING THE PD  

 
The problem of finding the algorithm for 

reconstructing the PD incorporates the determination of the 
weighting functions Rm(p, t), providing the reconstruction 

of the PD of the radiation field with minimum errors given 
by Eq. (8) or (9). Substituting Eq. (7) into Eq. (8) or (9) 
and varying either δ

ϕ

2 or δg
2 as functional of Rn by the 

methods of calculus of variations,8 we find the optimal 
weighting functions Rn  

 

⏐Rn(p, t)⏐ = ⏐ Mn Mm ⏐–1⏐Km⏐ ;  n , m = 1,...,L ; (10) 

 

Km = Km(p, t; ξ) = ϕ(p, t) Mm  ,  

 

where ⏐Rn(p, t)⏐ and ⏐Km⏐ are the column matrices. 

Relation (10) assumes linear independence of the functions Km. 

Relations (7) and (10) describe the algorithm for 
optimal reconstructing the PD and the PD gradients from 
the discrete readings of the wave front sensor. Residiual 
errors of reconstructing the PD are minimized for both 
performance figures given by Eqs. (8) and (9) 
simultaneously and are calculated according to the formulas  

 

δ
ϕ

2= σ
ϕ

2– Sp[⏐<Km Kn> – <Km><Kn>⏐⏐ Mn Mk ⏐–1] , (11) 

 

δg
2 = σg

2 – Sp[⏐<∇Km ∇Kn>⏐ ⏐ Mn Mk ⏐–1] , (12) 

 

where  δ
ϕ

2 = < ϕ2 > – <ϕ> 2 and σ
ϕ

2 = < (∇ϕ(ρ))2 > are the 

mean squares of the PD and of the PD gradient, 
respectively; the symbol Sp denotes the operation of finding 
of the spur of matrix.  

Let us find the Karhunen–Loeve functions, which 
can be used to minimize the volume of calculations in 
reconstructing the PD with a fixed error. Let us use the 
matrix method of construction of the Karhunen–Loeve 
modes. Since they must be spatially orthogonal and be 
represented in the basis Rm – <Rm>, let us construct the 

system of the functions Fn – <Fn> = (
nm m

A R∑ – <Rm>), 

orthonormalized with the weight A(p), where the 
coefficients Anm are the sought–after values. In a matrix 

form, the condition of orthonormalization  
 

A–T⏐<Rn Rm> – <Rn><Rm>⏐–1 A–1 = E , (13) 

 

where E is the unit matrix. Equation (13) corresponds to the 
performance figure given by Eq. (8). When determining the 
AOS modes with the performance figure of the correction of 
the PD in the form of Eq. (9), the functions ∇Fn(p) are 

orthonormalized with the weight A2(p), and the matrix of 
overlap ⏐<RnRm> – <Rn> <Rm>⏐ is replaced by 

⏐<∇Rn(p) ∇Rm(p)>⏐. Since Eq. (13) has an infinite number of 

solutions, let us assume that the matrix product entering 
into Eq. (11) is diagonal in the basis of functions Fn, i.e.,  

 

A–T⏐Mn Mm⏐ A–1 = ⏐δnmλn
2⏐ , (14) 

 
where λn

2 are the characteristic numbers9 and δnm is the 

Kronecker–Capelli symbol. The system of equations (13) and 
(14) corresponds to the problem of reduction of two  

symmetrical quadratic forms to their canonical form. The 
modes Fn being determined are characterized by the following 

property of extremum:10 let the chracteristic numbers be 
enumerated in such a way that they form a nonincreasing 
sequence λn+1

2  ≤ λn
2. Let us assume that there exists a system of 

the orthogonal modes Wn different from Fn, which, analogous 

to Fn, is constructed in the basis of the functions Rm – <Rm>; 

then the first m ≤ N modes (F1, . . . Fm) always ensure the 

error in reconstructing of the PD which is smaller than that 
for modes (W1, . . . Wm); in addition, the mean square of the 

reconstructed function of the PD is equal to ∑
1

m

  λn
2, and the 

mean square of the error of reconstruction is calculated 
according to the formula:  
 

δ
ϕ,g
2  = σ

ϕ,g
2  – ∑

1

m

 λn
2 . (15) 

 

Thus, the system of matrix equations (13) and (14) 
determines the Karhunen–Loeve modes when reconstructing 
the PD from the discrete spatio–temporal readings with an 
account of the measurement noise.  

The Karhunen–Loeve modes can be found also by the 
method described in Ref. 6. In this case the integral 
equations  
 

λi
2 (Fi(p) – <Fi>) = ⌡⌠

 
 
A(p1)(Fi(p) – <Fi>) × 

 

× ∑
n,

L

 ∑
m=1

L

 (Rn(p1) – <Rn>) (Rm(p) – <Rm>) Mn Mm dp1 ; (16) 

 

λi
2 Fi(p) =⌡⌠ A2(p1)(∇Fi(p1)) × 

 

× ∑
n,

L

 ∑
m=1

L

 (∇Rn(p1) Rm(p)) Mn Mm dp1 , (17) 

 

i = 1, . . ., M coinciding by their content with relations (13) 
and (14) were derived. The first equation corresponds to the 
figure of performance given by Eq. (8), and the kernel of this 
equation is proportional to the correlation function  

(ϕc(p) – <ϕc>) (ϕc(p1) – <ϕc>) . The second equation 

corresponds to the figure of performance given by Eq. (9), and 

its kernel is proportional to (ϕc(p) ∇ϕc(p1)) . The 

equivalence of the system of equations (13) and (14) with 
Eq. (16) can be established by means of substitution of the 

relation Fn = 
nm m

A R∑ into formula (16).  

Thus, relations (7) and (10) determine the algorithm for 
optimal reconstructing the PD from the discrete spatio–
temporal readings of the wave front sensor in the presence of 
the measurement noise, and equations (13) and (14) or (16) 
and (17) determine the Karhunen–Loeve modes which can be 
used for modal reconstructing the PD. In this case, the 
residual errors in reconstructing the PD are determined 
according to formulas (11), (12), and (15).  

For the AOS in which the spatio–temporal 
measurements of the PD are carried out continuously (for 
example, the interference wave front sensor is used as the PD 
sensor in the AOS) Eq. (7) takes the form of the integral  
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ϕc(p, t) = ⌡⌠
 
 
R(p, t; x) M(ξ)dξ (18) 

 

for the PD function being reconstructed, and the problem of 
reconstruction in this statement (in contrast to the problem of 
reconstructing the PD from discrete readings) is, in general 
case, to separate out the statistical function of the PD from 
the measured function and the function minimizing the error 
in reconstructing the function R(p, t, ξ). In formula (18), 
M(ξ) is the function of the measured quantities, and ξ is the 
vector defined earlier by relation (1). We note that in the case 
of discrete measurements, the equation determining the 
optimal weighting functions Rn is obtained by means of 

representing readings given by Eq. (1) in the form of the 

function (  - )
m m

Mδ ξ ξ∑ . 

From relations (8) and (9) taking into account Eq. (8) 
we find the integral equation for determining the optimal 
weighting function R(p, t; ξ)  

 

ϕ(p, t) M(ξ)  = ⌡⌠
 
 
R(p, t; x1) M(ξ) M(ξ1) dξ1 (19) 

 

by the variational method. Equation (19) is the spatio–
temporal Wiener–Hopf equation. Starting from Eq. (19), we 
find the equation for R(p, t; ξ). Let the solutions of the 
equation  

 

γnQn(ξ) = ⌡⌠
 
 
Qn(ξ1) M(ξ) M(ξ1) dξ1 (20) 

 

be well known, where Qn is the complete system of the 

orthonormalized functions, n = 1, 2, . . ., γn are the 

corresponding eigenvalues, and ⏐γn+1⏐ ≤ ⏐γn⏐. Expanding 

R(p, t; ξ) in terms of the functions Qn(ξ) and substituting 

them into Eq. (19), we derive  
 

R(p, t; ξ) = ⌡⌠
 
 

ϕ(p, t) M(ξ1)  Q(ξ, ξ1)dξ1 ; (21) 

 

Q(ξ, ξ1) = ∑ Qn(ξ) Qn(ξ1)/γn . 
 

Thus, relation (18) is the optimal solution of the problem 
of reconstructing the PD and its gradient from continious 
measurements. The weighting function R(p, t; ξ), entering 
into Eq. (18) is given by Eq. (21). Having determined the 
weighting function R(p, t; ξ) we can calculate the residual 
error in reconstructing the PD and its gradients. Equations for 
their determination are obtained after substitution of Eqs. (18) 
and (19) into Eqs. (8) and (9), respectively:  

 

δ
ϕ

2 = σ
ϕ

2 – ⌡⌠
 
 
A(p) R(p, t, ξ) × 

 

× (ϕ(p, t) – <ϕ(p, t)>) M(ξ) dpdξ/⌡⌠
 
 
A(p)dp ;  

 

δg
2 = σg

2 – ⌡⌠
 
 
A2(p) ∇R(p, t, ξ) × 

 

× (∇ϕ(p, t)) M(ξ) dpdξ/⌡⌠
 
 
A2(p)dp . (22) 

Let us write out the integral equations for determining the 
Karhunen–Loeve modes in the case of continious 
measurements of the PD in the presence of the measurement 
noise. Taking into account Wiener–Hopf equation (19) and 
the algorithm for reconstructing given by Eq. (18), the 
sought–after integral equations for the performance figures 
in the form of Eqs. (8) and (9), respectively, take the form  

 

λi
2 (Fi(p, t) – <Fi>) = ⌡⌠

 
 
A(p1)(Fi(p1, t) – <Fi>) × 

 

× R(p1, t, ξ) (ϕ(p, t) – <ϕ>) M(ξ) dp1dξ , (23) 

 

λi
2 Fi(p, t) = ⌡⌠

 
 
A2(p1)∇Fi(p1, t) [ (ϕ(p, t)) M(ξ) ] × 

× ∇R(p1, t, ξ)dp1dξ . (24) 
 

Error in the reconstructing the PD, similary to the 
case of discrete readings, is calculated according to 
formula (15).  

Relations, given in this section, describe the 
algorithms for the reconstruction of the PD from discrete 
and continious measurements of the PD which accounts for 
the measurement noise. Study of the efficiency of the 
developed algorithms for the reconstruction of the PD in 
the AOS as applied to the solution of practical problems in 
applied optics requires precise definition of the statistical 
properties of the PD and noise.  

 
ALGORITHM FOR CONTROL WITH THE PHASE 

CORRECTOR  

 
Determining the algorithm for control with the AOS 

phase corrector incorporates an adjustment of the coefficients 
Hnm and calculation, using them (taking into account the 

readings of the wave front sensor Mm), the controlling actions 

un exerted by the phase corrector in the form of Eqs. (2) and 

(3), and minimization of the performance figures of the AOS 
in the form of Eqs. (8) and (9). 

Equation determining the coefficients Hnm of the matrix 

H are found from the condition of minimization of the residual 
error in compensating the PD δ

ϕ

2 in the form of Eq. (8) and the 

PD gradients δg
2 in the form of Eq. (9), as functions of Hnm:  

 

H = ⏐RR⏐–1 ⏐RϕM⏐ ⏐ MnMm ⏐–1, (25) 

 

in which, if the quality of compensating the PD is 
determined by Eq. (8), we have  

 

⏐RR⏐ = ⏐ <R
#

n R
#

m>  – <R
#

n><R
#

m> ⏐ and  

 

⏐RϕM⏐ = ⏐ <R
#

n  ϕMm>  – <R
#

n >< ϕMm> ⏐, 

 

and if the quality of compensating the PD is given by 
Eq. (9), we have  

 

⏐RR⏐ = ⏐ <∇R
#

n(p) ∇R
#

m(p)> ⏐ and  

 

⏐RϕM⏐ = ⏐ <∇R
#

n(p)  (∇ϕMm)> ⏐  
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where notation R
#

n(p) = (Rn(p) + δRn) ⋅ (1 + νn) has been 

employed. In the derivation of relation (25), we assumed 
that the random variables νn and δRn were statistically 

independent of Mn and ϕ.  

Relations (2), (3) and (25) determine the optimal 
algorithm for control with the phase corrector of the AOS, 
which provides the correction of the PD with minimum 
residual error δ

ϕ

2 in the form of Eq. (8) or its gradient δg
2 in 

the form of Eq. (9). In addition, we assume that measuring 
of the spatial distribution of the PD is carried out by the 
wave front sensor in a discrete number of points and the 
noise component, according to Eq. (1), is present in 
readings, while the correcting phase actions are executed by 
the phase corrector with the error of control incorporating 
the components δRn and νn, respectively.  

In this case the error in compensating the PD of the 
radiation field in the AOS is calculated according to the 
formula 

 

δ
ϕ,g
2  = σ

ϕ,g
2  – Sp[⏐RϕM⏐ ⏐MnMm⏐–1 ⏐RϕM⏐T ⏐RR⏐–1], (26) 

 
in which the values σ

ϕ,g
2  are given by Eqs. (8) and (9).  

The compensating phase distribution realized in 
optimal control of the AOS with respect to the performance 
figure in the form of Eq. (8) does not coincide with the 
distribution being optimal with respect to the performance 
figure in the form of Eq. (9) since optimizing the figure of 
performance in the form of Eq. (8) maximizes the axial 
beam intensity, whereas in the form of Eq. (9) minimizes 
the beam angular divergence. In the absence of the noise 
component in the case of ideal operation of the AOS thus 
that the ideal plane or spherical radiation wave front is 
reconstructed as a result of its action, the algorithm for 
control of the AOS minimizes the performance figures 
according to Eqs. (8) or (9), i.e., in the absence of noise 
with increase of the number of control channels of the AOS 
and of the measurements of the PD, the algorithm described 
by Eqs. (2), (3), and (25) ensures the errors in 
compensating for the PD which approach zero when using 
either of the performance figures given by Eqs. (8) or (9).  

As well as for the solution of the problem of the PD 
reconstruction, to find the algorithm for optimal control 
with the corrector of the phase conjugate AOS of modal 
type, the Karhunen–Loeve modes are constructed. The 
system of equations for determining the weighting 
coefficients Anm needed for construction of these modes 

Fn(p), has the following form:  
 

A–T ⏐RR⏐–1 A–1 = E ; (27) 
 

A–TH ⏐ MnMm ⏐ HTA–1 = ⏐λn
2δnm⏐ . (28) 

 

The error in compensating the PD is calculated 
according to formula (15), and controlling modal actions are 
calculated taking into account Eq. (6).  

It should be noted that in the absence of errors of 
control, the modes Fn(p) – <Fn> are spatially orthogonal in 

the sense of the requirement  
<(Fn – <Fn>) (Fm – <Fm>)> = δnm. In the presence of the 

errors in control of the AOS, the modes Fn(p) given by 

Eqs. (4) with an account of Eqs. (27) and (28), are spatially 
orthogonal in a statistical sense, i.e.,  
 

<(Fn – <Fn>) (Fm – <Fm>)>  = δnm. 

In the phase corrector of the AOS the mean 
statistically orthogonal modes Fn can be realized with null 

error of their approximation by virtue of condition (4), 
therefore the implementation of algorithms (5) and (6) in 
the phase conjugate AOS of modal type will provide 
realization of the compensation for the PD with the 
theoretically smallest residual error.  

Thus, relations (2), (3), and (25) and (5), (6), (27), 
and (28) determine the zonal and modal algorithms, 
respectively, for optimal control with the phase corrector of 
the AOS based on the discrete spatio–temporal 
measurements which accounts for the measurement noise 
and for the errors of realization of controlling actions. The 
errors of compensation are calculated according to 
formulas (26) and (15).  

Generalization of the above–considered problem on the 
case of control of the AOS in which the PD are measured 
continuously, leads to the necessity of constructing its 
solution in the integral form. Thus, formula (3) for 
determining the controlling actions of the AOS phase 
corrector, will have the form  

 

un(t) = ⌡⌠
 
 
Hn(t; ξ) M(ξ) dξ , n = 1,..., N , (29) 

 

in which the functions Hn must be optimized. Realizing the 

variation of the functions Hn in Eqs. (8) and (9) with an 

account of Eq. (29) we arrive at the relation for their 
determination  

 

⏐⌡⌠
 
 
Hn(t; ξ1) M(ξ) M(ξ1) dξ1 ⏐= 

 

= ⏐ <R
#

n R
#

m>  – <R
#

n><R
#

m> ⏐–1 × 

 

× ⏐ <R
#

m  ϕM(ξ)> – <R
#

m >< ϕM(ξ)> ⏐ ; (30) 

 

⏐⌡⌠
 
 
Hn(t; ξ1) M(ξ) M(ξ1)  dξ1⏐= 

 

=⎜ <∇R
#

n(p)∇R
#

m(p)> ⎜–1⎜<∇ R
#

m(p) (∇ϕ(p)M(ξ)) >⎜. (31) 

 

Integral equations (30) and (31) are the Wiener–Hopf 
equations for the filter functions Hn(t; ξ) of the phase 

conjugate AOS with the prescribed response function on the 
actions of the actuators in the presence of noise of 
measurement of the PD and errors of control of the AOS. 
Equation (30) corresponds to the figure of performance in the 
form of Eq. (8), and Eq. (9) corresponds to the figure of 
performance in the form of Eq. (9). If we know the solutions 
of auxiliary integral equation (20), the solutions of 
equations (30) and (31) can be represented in the explicit 
form:  
 

⏐Hn(t; ξ)⏐ = ⏐RR⏐–1 ⏐RϕM(ξ)⏐ , (32) 
 

where, in the case of the figure of performance given by 
Eq. (8),  

 

⏐RϕM(ξ)⏐ = ⏐⌡⌠
 
 
{< R

#

n(p)  ϕ(p, t)M(ξ1) > – 
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– < R
#

n(p) > < ϕM(ξ1) >} Q(ξ, ξ1)dξ1⏐ 

 

and in the case of the figure of performance given by 
Eq. (9)  

 

⏐RϕM(ξ)⏐ = ⏐⌡⌠
 

 
{< R

#

n(p) × 

 

× (∇ϕ(p)M(ξ1))  >} Q(ξ, ξ1)dξ1⏐ .  

 

Here the function Q is determined by relation (21). The 
error of compensation is calculated according to the formula  

 

δ
ϕ,g
2  = σ

ϕ,g
2  – Sp[⏐RR⏐ ⏐HH⏐] , 

 

where  
 

⏐HH⏐ = ⏐⌡⌠
 
 ⌡⌠

 
 
Hn(t; ξ) Hm(t; ξ2) × 

 

× M(ξ1) M(ξ2) dξ1dξ2 ⏐ . 

 

Equations for determining the Karhunen–Loeve 
functions are analogous to the system of equations (27) and 
(28) and are found taking into account Eq. (29):  

 
A–T ⏐RR⏐–1 A–1 = E ; (33) 
 

A–T ⏐HH⏐ A–1 = ⏐λn
2 δnm⏐ . (34) 

 
Thus, relations (2) and (29)–(32) and (4), (33), and (34) 

describe the zonal and modal algorithms for control of the 
phase conjugate AOS, based on the continuous measurements 
of the PD which guarantee the compensation for the PD with 
a minimum residual error in the presence of noise of the 
measurement of the PD and the errors of control. In addition,  

in the case of the modal algorithm for control, the modes 
formed by the phase corrector, are statistically mean 
orthogonal and provide the fastest decrease of the error of the 
compensation with increase of the number of the modes used 
in the AOS.  

The approach to the development of the algorithm for 
control with the phase corrector of the AOS incorporating the 
determination of controlling phase actions, which optimize the 
goal function of the AOS (being the function of performance 
figures in the form of Eqs. (8) and (9)), directly recorded by 
the system without the intermediate stage of measuring and 
processing of the measurements of the PD is well–known.1 
Search for the extremum of the goal function can be 
implemented with the help of the search – for modal 
algorithm for control with the corrector by means of a 
successive search optimization of the goal function of the AOS 
for each mode whose number and shape must be determined in 
accordance with the application of the AOS. In this case the 
requirements to the modes of the AOS practically reproduce 
the requirements to the Karhunen–Loeve modes for the phase 
conjugate AOS, namely, the modes must be spatially 
orthogonal for independence of the control channels of the 
AOS and for reaching the global extremum of the goal 
function; the error of compensation in the case of a successive 
realization of modes must decrease rapidly with increase of the 
serial number of mode, for the fast AOS with fixed quality of 
compensation; the modes must be formed by the corrector of 
the AOS without the error in their approximation, which will 
lead to deterioration of the convergence of the algorithm and 
to the increase of the error of compensation. To apply relations 
for determining the above–obtained optimal modes to the 
AOS with search for an algorithm of control, it is sufficient to 
set the noise of the measurement of the PD equal to zero in 
formulas (29)–(34). Corresponding modification of Eqs. (29)–
(34) leads to the following system of equations:  

 

A–T ⏐RR⏐–1 A–1 = E ; (35) 
 

A–T GA–1 = ⏐ln
2 dnm⏐ , (36) 

 

where 
 

 

G =⏐RR⏐–1 ×⏐⌡⌠
 
 ⌡⌠

 
 
A(p1) A(p) (ϕ(p1, t) – <ϕ(p1, t)>)(ϕ(p, t) – <ϕ(p, t)>) R

#

n (p1) R
#

m (p)dp1dp ( )
2

1
( ) d    / A p p RR

−

∫  

 

G = ⏐RR⏐–1 ⏐⌡⌠
 
 ⌡⌠

 
 
A2(p1) A2(p) × ( ∇R

#

n (p1) ∇ϕ(p1, t)) ( ∇R
#

m (p) ∇ϕ(p, t))  ( )
2

 12
1( ) d d  d    A p p p p RR

−

−

∫  

 
in the cases of the performance figures in the form of Eqs. (8) 
and (9), respectively. Thus, relations (35) and (36) determine 
the Karhunen–Loeve modes for the search modal algorithm for 
compensating the PD, in addition, the residual error of 
compensation is calculated according to formula (15). 

The spatially orthogonal modes minimizing either 
performance figures in the form of Eqs. (8) and (9) 
simultaneously, are of interest for the AOS with modal 
control. In this case the first equation of the system of 
equations (28) and (29) (or (24), (25), (35), and (36)) is 
substituted by two equations describing the condition of 
orthogonality of the functions (Fn – <Fn>) and (∇Fn), i.e., 

the problem of finding the algorithm for control of the AOS 
is reduced to the solution of the system of three equations. 
The modes (Fn – <Fn>), constructed for this problem, will 

be mean–statistically spatially–orthogonal in the process of 
control of the AOS with respect to either energy performance 

figures, i.e., such an algorithm for control will guarantee the 
formation by the AOS of the radiation fluxes having a 
minimum divergence and a maximum pick intensity. However, 
proof of existence of solutions of the above–described system 
of equations requires a special study.  

 

STUDY OF THE ALGORITHMS FOR 

RECONSTRUCTING AND COMPENSATING THE PD 
 

A developed theory was used to study the efficiency of 
the zonal and modal algorithms for control with the phase 
corrector on the basis of the deformable mirror (DM) of the 
phase conjugate AOS with deterministic response functions in 
the presence of the noise component in the measured PD. To 
this end, we determined the error in compensating the PD as a 
function of the number of control channels of the phase 
corrector of the AOS, of the signal–to–noise ratio when 
taking each reading of the PD by the Hartmann wave front  
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sensor, and of the correlation length of the PD and compared 
this error with its minimum value obtained when realizing the 
developed procedure of optimal reconstructing the PD. 

Numerical calculations of the Karhunen–Loeve modes 
were carried out on the basis of matrix equations (13) and 
(14) and (27) and (28), since they required much shorter 
computation time compared to the calculations on the basis 
of the integral equations.  

When carrying out the calculations, we assumed that the 
round actuators of the DM were located in the nodes of the 
hexagonal grid. The response functions of the round DM were 
taken in the form12 Rn(p) = exp[ln 0.15((p – pn)/b)2], where 

b is the distance between the actuators and pn are the 

coordinates of the nodes of the hexahonal grid. The number of 
the channels of the Hartmann wave front sensor was taken 
equal to 3, 7, and 19 and was equal to the number of the 
actuators of the DM.  

Vector of the measured PD in this assumption had the 
form  

 
Mn = ∂ϕ(pn, t – τ)/∂wn + Naw(pn) ; n = 1, 2, ..., 2N , 

 
where τ is the time interval between the moments of 
Numerical measurement of the PD and realization of control 
with the DM, w = x for n = 1, 2, ..., N and w = y for 
n = N + 1, , 2N, ∂ϕ/∂x and ∂ϕ/∂y are the slopes of the 
function of the FD being reconstructed or compensated, and 
Nax and Nay are the errors of their measurements 

(measurement noise). The statistical characteristics of the 
PD were given by the following relations:  
 

ϕ(p1, t1) ϕ(p2, t2)  = σ2Bt(⏐t1– t2⏐)exp(–⏐p1– p2⏐2/Rc
2) ; 

 

Nax(pn) Nay(pm)  = 0 ;  

 

Nax,y(pn) dϕ(pm)/dw  = 0 ; 

 

Nax,y(pn) ϕ(pm)  = 0 ; 

 

Nax(pn) Nax(pm)  = Nay(pn) Nay(pm)  = Na
2 δnm/2 , 

 

in which Bt(⏐t1 – t2⏐) is the coefficient of the time 

correlation ϕ(p, t); σ2 and Rc are the variance and correlation 

length of the PD being reconstructed, respectively, and N a
2 is 

the noise variance. Calculations of the residual errors in 
compensating the PD were carried out according to 
formula (26), and errors in reconstructing – according to 
Eq. (11); the modes optimal for the modal algorithm for 
control were found from the systems of matrix equations (13) 
and (14) and (27) and (28).  

The family of dependencies of the relative residual error 

in compensating the PD ε(S) = δ
ϕ

2/(< ϕ2 > – < ϕ >2 ) on the 

relative noise level S = N a
2/g2, where the parameter 

g2 = 4σ2/c2 is the mean square of the PD gradient, 
c = Rc/Rm is the relative correlation length of the PD, and 

Rm is the radius of the mirror, is shown in Fig. 1 for the AOS 

without delay of control (τ = 0). Curves 1, 2 and 3 in Fig. 1 
have been obtained for the AOS with the number of the 
controlling channels N = 3, 7, and 19, respectively, with 
relative correlation length of the PD c = 0.5. Curves 4 and 5 
in Fig. 1 correspond to c = 1 and 2 for the AOS with the  

number of the control channels N = 7. The solid curves 
correspond to the error in compensating the PD of the AOS, 
the dashed curves correspond to the errors in reconstructing 
the PD.  
 

 
 

FIG. 1. Dependence of the relative residual error in 
compensating (solid curves) and reconstructing (dashed 
curves) the PD on the level of noise S. Curves 1, 2, and 3 
correspond to N = 3, 7, and 19 for c = 0.5. Curves 4 and 5 
correspond to N = 7 for c = 1 and 2.  
 

Comparison of the dependencies shows that the error in 
optimal reconstructing the PD of the AOS is always less than 
the error of their compensation. Relative difference in the 
errors of compensation and reconstruction in the considered 
range of variation in the parameters increases with increase of 
the number of the control channels of the AOS and reaches 5–
8 times for N = 19. Decrease of their relative difference with 
decrease of the control channels N of the AOS is explained by 
a total decrease of the efficiency of compensating and 
reconstructing the PD. Here the values of ε are close to 1 in 
both cases. Increase of the noise level in the AOS leads to the 
increase in the error in compensating and reconstructing the 
PD and, as a consequence, to the decrease of the relative 
difference between them, which for S ≥ 0.5. . . 1 is <10%. 
Absolute difference between the errors of compensation and 
reconstruction for S = 0 . . . 0.3 remains approximately 
constant and equal to its value without noise. Thus, the 
dependences can be used to determine the efficiency of the 
reconstruction and compensation of the PD for the phase 
conjugate AOS and to justify the choice of the efficient 
parameters of the AOS intended for the solution of practical 
problems of correction of the PD.  

Figure 1 can be used for estimation of the efficiency of 
the AOS with the time delay τ in executing the controllable 
compensating phase actions. In this case the errors of 
compensation (and reconstruction) ε(τ, S) are related to 
ε(S) (ε(0, S) = ε(S) for τ = 0) by the formula following 
from Eqs. (8), (9) and (17):  

 

ε(τ, S) = 1 – Bt
2(τ)∗[1 – ε(S)] . 

 
This equation can be used to estimate the admissible 

time delay τ0 in executing the controllable phase action 

compensating the PD. We will start from the condition that 
for time delays τ < τ0 the dynamic part of the error in 

compensating the PD (ε(τ, S) – ε(S)) does not exceed its 
statistical part (ε(S)). In the case of the near–Gaussian  
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correlation coefficient (Bt(τ) = exp(–⏐τ/τc⏐
q), where τc is 

correlation time and q > 0), the given condition is fulfilled 
for τ0 ≈ τc [ε(S)/2]1/q. Less stringent requirements for fast 

adaptive control correspond to large values of q.  
 

 
 

FIG. 2. Dependence of the relative residual error of 
compensation on the error variance of control. Curves 1 
and 2 correspond to S = 0.0 and S = 0.5 for N = 7, 
c = 0.5, and b = 0.5.  
 

Dependence of the error in compensating the PD on the 
error variance of control ν2 is shown in Fig. 2 for τ = 0. 
Statistical characteristics of the errors of control were taken in 

the form νnνm = ν2δnm. The relative error of compensation 

ε(ν, S) increases with ν2 and is ε(ν, S) ≈ 1 – (1 – ε(S))/(1 + ν2). 
 

 
 
FIG. 3. Dependence of the relative contribution of the 
Karunen–Love modes to the mean square of the 
compensating phase on the correlation length c for N = 7, 
S = 0, and b = 0.5. The curves correspond to the serial 
numbers of modes: 1) 1, 2) 2 and 3, 3) 4 and 5, 4) 6, and 
5) 7.  
 

Dependence of the values λi
2/σ2 of the relative 

contribution of the orthogonal Karhunen–Loeve modes to 

the mean square of compensating phase σ
ϕ

2 = <ϕc – <ϕc>>2 , 

for N = 7 on the correlation length of the PD are shown in 
Fig. 3. Data of Fig. 3 can be used to evaluate the number of 
the AOS modes needed for the compensation for the PD  

with a fixed accuracy in the presence of noise of a given 
intensity. Analysis of these dependencies shows that 
contributions of different modes to the mean square of the 
compensating phase, being substantially different for long 
correlation lengths of the PD, become close in values when 
they are reduced. Each mode is characterized by the 
corresponding spatial frequency. When the correlation length 
of the PD is sufficiently reduced, the spatial frequencies of the 
modes turn out to be in the region of the constant power 
density of the frequency spectrum of the compensating phase. 
As a result, the contribution of different modes in the 
compensation is independent of the frequency and the serial 
number of the mode.  

It follows from Fig. 3 that the contribution of each 
mode, depending on the correlation length, has maximum 
whose value and position depends on the serial number of the 
mode. When the serial number of the mode increases, the 
position of maximum is shifted toward the shorter correlation 
lengths. The presence of maximum is associated with the fact 
that the contribution of each mode vanishes as both c → 0 and 
as c → ∞. When the correlation length of the PD approaches 
zero, the PD power density per a mode decreases due to 
broadening of the PD spectrum, while when the correlation 
length increases, it decreases due to the concentration of the 
spectrum around the zeroth frequency. Maximum of the 
contribution of the lowest–order modes lies in the region of 
the correlation lengths c = 0.4 – 1.  
 

 
 

FIG. 4. Dependence of the relative contribution of the 
Karhunen–Loeve modes to the mean square of the 
compensating phase on the noise level S for c = 0.5, 
N = 7, and b = 0.5. The curves correspond to the 
following serial numbers of modes: 1) 1, 2) 2 and 3, 3) 4 
and 5, 4) 6, and 5) 7.  
 

The graphs of the relative contribution λi
2/σ2 of the 

modes, employed for compensation of the PD, to the mean 
square of the compensating phase distribution as a function 
of the relative intensity of the measurement noise S for 
N = 7 and c = 0.5 are shown in Fig. 4. The contribution of 
each mode decreases with noise.  

Thus, the calculated results in the framework of the 
developed model representation can be used to predict the 
efficiency and to determine the conditions of the optimal 
use of the phase conjugate AOS for solving the applied 
problems in atmospheric and laser optics.  
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