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Image simulating algorithms for a laser-illuminated scattering layer in turbulent atmosphere 
are presented. The examples of using these algorithms to proof the speckle photography usability for 
visualization of enhanced turbulence zones in the atmosphere are cited. 

 

When developing the speckle-photography3
 

rendering methods for searching and visualization of 
zones of enhanced atmospheric turbulence,1,2 the need 
in detailed analysis of capabilities and accuracy of 
these methods under different atmospheric conditions 
is of importance. Such analysis is impossible without 
modern computer technologies. However, direct 

simulation of laser radiation propagation along paths 
with reflection in turbulent atmosphere through 

imaging a laser-illuminated area of the scattering 

surface requires so large working memory and time 
consumption, that becomes impossible when using 
standard personal computers. 

The problem of imaging the illumination spot of 
the scattering atmospheric layer is formulated in this 
work and possible ways of its numerical solution for 
some special cases are described. 

Consider an optical diagram (Fig. 1). 
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Fig. 1. The diagram of laser radiation propagation. 

 
A laser pulse with the initial distribution 

U0(0, ρ′, t) passes the distance L in the atmosphere 
and then scatters on some atmospheric layer. The 
scattered radiation is received by a telescope with a 
photodetector array in the receiving plane. The 
complex amplitude of the scattering-particle incident 
field is written as 
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where zl is the longitudinal coordinate of the 
scattering particle; ρl is the radius-vector determining 
the particle position in the transversal plane; c is the 
light speed; t is the time; ψ = χ + iS, χ is the 
amplitude noise and S is the phase jitter of a partial 
spherical wave propagating from (0, ρ′) plane to the 
(zl, ρl) point; K(zl) is the attenuation function; 
k = 2π/λ is the wave number; i is the imaginary unit. 
  The complex amplitude of the field scattered by 
the particle in the plane z = 0 is written as  
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where αl is the particle scattering amplitude; 
ψ(ρl, ρ″) is the random complex phase incursion of a 
spherical wave propagating back from the particle to 
telescope. 

The integrated field in the (0, ρ″) plane is 
defined as a sum of the right part of Eq. (2) over all 
scattering particles Ns in the layer 
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For the thin scattering layer ⎟ zl – L ⎢ << L, we can 
assume t = 2L/c, zl ≈ L in Eq. (2), leaving the zl-

dependence only in the fast oscillating multiplier .e
likz  

  Finally, for the field in the telescope receiving 
plane (l, ρ) we obtain 
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where T(ρ′′) is the amplitude transmission factor of 
the receiving aperture; F is the telescope focal length. 
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As it follows from Eq. (3), the received radiation 
strength in the (l, ρ) plane 

 I(l, ρ, t) = ⎟ U(l, ρ, t) ⎢2 (4) 

is defined by the equation  
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Introduce the parabolic equation Green functions 
for the complex field amplitude in the direct and 
backward direction as applied to the propagation 
geometry in Fig. 1: 
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Using Eqs. (6à) and (6b), for the field U
s
 in Eq. (5) 

obtain 
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which allows Eq. (5) to be presented in the form  
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Items with l ≠ l ′ in Eq. (8) can be ignored in the 
case of arbitrary stochastic distribution of initial 
space positions of scattered particles due to the fast 

oscillating multipliers e ,l
ikz  if the scale of probability 

distribution function variations significantly exceeds 
the wavelength of the scattered field.4 The scales of 
turbulent inhomogeneities of the atmospheric velocity 

field essentially exceeds the length of optical waves, 
hence, we can use this approximation and restrict 
ourselves to the items with l ≠ l ′ in Eq. (8). As a 
result, obtain 
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Replace the summation in Eq. (9) by the scattering 
volume integration  
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introduce the average backscatter cross section 
<⎪αl 

⎪2> = θs and the concentration of the scattering 
particles ρs. Then, for Eq. (9) will be 
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Let us integrate over the longitudinal coordinate 

zl in Eq. (10) using the Gaussian model for initial 
field distribution: 
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σ determines the pulse duration; a and f are the beam 
radius and the radius of phase front curvature, 
respectively: 
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Finally, for the intensity distribution in the image of 
laser-illuminated atmospheric layer, obtain 
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βπ = ρsθs designates the backscattering coefficient 
and α = a/f defines the initial beam divergence. In 
accordance with the reciprocity theorem,5,6 the Green 
function for the backward propagation in Eq. (13) is 
written in the form corresponding to the forward 
propagation. 

Thus, it follows from Eq. (13) that the intensity 
of the image of laser-illuminated atmospheric layer is 
completely determined by the integral of the product 
intensity distribution on the layer of the illuminating 
laser beam [Eq. (14)] and the “beam” with parameters 
of the receiving telescope and propagating forward  
as well [Eq. (15)]. Equation (13) is correct up to 
numerical coefficients not only for atmospheric 
scattering of pulse radiation, but also for continuous 
radiation reflected from a “hard” diffusive surface. 
  Equation (13) permits a generalization. In the 
case of irregular layer concentration of scatterers, 
Equation (3) takes the form 
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where ρs(ρl) can be random function in general case. 
Incomplete spatial coherence of a source can be 
accounted for via using the following model for the 
initial field distribution instead of Eq. (11): 
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where the random phase Ss(ρ′) is defined by the 
correlation function 
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The function of spatial field coherence of a laser 
source for model (17) is written in the form7 
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It follows from Eq. (19), that the radius of spatial 
source coherence ak ∼ ls is comparable with the scale 

of phase correlation ls ∼ ⎪Ks
′′

 

⎪–1/2, while at large 

phase fluctuations 2

sσ  >> 1 the radius of field 

coherence is defined by the ratio ak ∼ ls 

/σs. 
Finally, Eq. (13) for scattering particles, 

changing their positions in space, written for the 
time moment t + Δt has the form 
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of scattering particles migration within the layer, 
which is normal to the direction of illuminating  

beam propagation. The speed vector ( )lV ρ  can have  

a complicated functional dependence on lρ  and be 

random. 
The algorithm for computing the intensity 

distribution by Eq. (13) is the following: the forward 
propagation of two beams to the scattering layer is 
simulated, e.g., using the splitting technique over 
physical factors,8 their intensities are computed, then 
multiplied, and the result is integrated in general 
case with the weight function ρs(ρl). But such direct 
integration is not always possible due to large time 
consumption. The simulation problem is essentially 
simplified at l = F, if the turbulence effect is 
negligible, like, for example, in case of high-altitude 
propagation path or vertical and slant propagation 
paths, when the distorting layer is adjacent to a 
receiver-transmitter and the turbulence effect is well 
phase screen approximated.9 Then Equation (13) takes 
the form of convolution integral 
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and the algorithm for imaging the illuminated layer 
is reduced to the computation of Fourier transform of 
I in the image as a product of Fourier transforms of 
the I1 and It: 
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and computation of the inverse Fourier transform  
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The use of the fast Fourier transform provides for the 
intensity computation in image at quite acceptable 
time costs. 

Another algorithm is based on the illuminated 
beam squared intensity approximation: 
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where 
0( , , )t lI L ρ ρ  is the beam intensity distribution 

with parameters, determined by the parameters of a 
receiving telescope in the plane of scattering layer, 
computed for homogeneous medium. According to 
Eq. (23), “scanning” of the illumination spot is 
performed with a telescopic beam; turbulent 

distortions in this case are taken into account under 
the assumption that they are similar for illuminating 
and telescopic beams, that is valid when using a 
narrow-field receiving telescope. 
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Fig. 2. Visualization of aircraft vortex shedding: L = 1 km; 
Ñn

2
 = 10–15 m–2/3; α = 30′′; effective diameter of the 

telescope aperture is 0.2 m. 

Both algorithms were tested in numerical 
experiments,1,2,10,11 in particular, in analyzing the 
capabilities to visualize eddy regions of the enhanced 
turbulence in aircraft traces and wind velocity 
measurements by the speckle photography.1,2,10 The 
computer simulation results for the visualization of 
vortexes followed the aircraft in air2 are shown in 
Fig. 2. The intensity distribution in the image of 
scattering layer computed for the optical diagram 
(see Fig. 1) by algorithm [Eq. (23)] at the time point 
t [Eq. (13)] is shown in Fig. 2a and at the time point 
t + Δt [Eq. (20)] – in Fig. 2b. Changing of positions 
of scattering particles in the layer ρl 

(Δt) was 
simulated following the model for the tangential 
velocity in aircraft vortexes.12 Vortex structures are 
clearly seen in the image. They arise due to the 
transfer of scattering particles and turbulent 

inhomogeneities along the propagation path by the 
aircraft vortex velocity field. 
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