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Up-to-date approaches to modeling the climate and tendencies of its changes are considered, their
merits and demerits are analyzed, and main difficulties arising in solution of the modeling problems are
pointed out. An approach is proposed to estimate climate change tendencies; it is based on the use of
ideas and methods of the sensitivity theory of distributed systems. New methods of the sensitivity theory
are developed, and models of sensitivity of climatic models to variations of their parameters are
constructed. The equations for the functional sensitivity depending on solution of the equations of fluid-

dynamics models are derived.

Introduction

The problems of studying the tendencies in climate
change both on the global and local scales attract now
the growing attention of scientists. This is caused, on
the one hand, by growing anthropogenic impact on the
environment. Climatic systems response to this impact,
and the consequences of the response for social and
economic development of individual countries and
humanity as a whole are not obvious and therefore call
for thorough study. These consequences include global
warming of the lower atmosphere due to growing
atmospheric emissions of carbon dioxide, increase in the
flux of UV radiation coming to the Earth’s due the
effect called the ozone hole, etc.

On the other hand, a great attention to evolution
of climatic systems is caused by the need in planning of
the social and economic development of regions and
solution of geopolitical problems.

Approaches to climate modeling

In modeling of the climate and its tendencies, as
well as in modeling of other atmospheric processes,
three approaches can be distinguished: physical-
statistical, hydrodynamic, and dynamic-stochastic.

The first approach, developed largely in the papers
by Borisenkov and Budyko, is based on the time
extrapolation of the information on the state of some or
other climatic system. However, the conditions of
climate evolution in the past and future cannot be
thought the same, because, for example, the
anthropogenic impact on the global atmospheric
processes was negligible by the end of the 19th century,
and now it is an important factor affecting the climate
evolution. In this connection, prognostic estimates
obtained in the framework of this approach are
characterized by low reliability.
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An attempt to take into account the variation of
factors affecting the climate evolution, leads to the
need of using fundamental physical laws expressed by
the system of equations of atmospheric
hydrothermodynamics written with some or other
assumptions. Depending on whether the model
parameters are random objects or not, the results of
modeling also are random or nonrandom objects
(parameters, vectors, fields). In the first case, we deal
with dynamic-stochastic modeling; otherwise, it is a
hydrodynamic modeling.

Two latter approaches are obviously more
constructive, because they allow different scenarios of
variation of the affecting factors. However,
implementation of these approaches faces a number of
difficulties.

Let wus introduce designations traditional for
climatic models: @, is the state vector, whose
components are the fields of the state parameters

D> = CD<m>(X<3>, t; qJ<n>),

where X<3- is the vector of spatial coordinates; ¢ is
time; W.,> is the vector of model parameters, whose
components are generally the fields determined from
the physical formulation of the problem and its
particular mathematical formalization,

q"<n> = l'|J<n>()(<3>, t)-

Then the general formulation of the model looks
as (subscripts are omitted for brevity)

B%;‘t)+ G(®, W) =0;

® 0 QDy), WORWD,Y, )

where B =B, is an mxm diagonal matrix;
G(D,W) =Gy (®, W) is a nonlinear matrix
differential operator; D; is the domain of variability of
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the space and time coordinates; Q(D;) is the space of
functions meeting the boundary conditions entering into
the formulation of the problem (the solution of the
problem belongs to this space); R(D;) is the domain of
accessible values of the parameters.

The operator G in Eq. (1) must be a nonlinear
differential operator, because it is obvious now that
linear (linearized) models fail to realistically describe
climatic systems.

Since by climatic values are meant some
established values of solutions themselves (1), or some
their functionals, implementation of a climatic model in
the hydrodynamic approach consists in solution of
Eq. (1) with the use of mean values of the model
parameters (their mathematic expectations). In addition
to high resource-consumption of such a process, it
should be noted that, because of nonlinearity of the
operator G, the solution of the problem (1) is shifted

with respect to the mathematic expectation ®,,s (or
its functional), which is just an estimate of the future
state of the climate. This explains low adequacy of
hydrodynamic climatic models.

In the dynamic-stochastic approach, it is assumed
that the parameters of the model (1) are random
objects (parameters, vectors, fields) with a known
distribution, and the sought parameter is the

distribution &)<m> (" denotes a random value) or some
numerical characteristics of this distribution. The
approach gives more realistic estimates of climatic
characteristics, but its implementation also faces some
difficulties of applied and theoretical character.

The approach based on imitating modeling of the
climate evolution can be used as a way out of the

situation. In this case, realizations of qJ<m> are
modeled, based on the information on the distribution
of the parameters of the model (1), with the help of a
generator of random objects. Then the problem (1) is
solved many times for these realizations, whereupon

numerical characteristics of the distribution &J<m> are
evaluated. However, the approach requires so much
computational resources (taking into account the
dimension of the vector of parameters) that its
applicability becomes unrealistic.

Our purpose was to develop the mathematical
apparatus allowing us to overcome the difficulties listed
above. This apparatus is based on the ideas and
methods of the sensitivity theory of distributed systems
and imitating modeling.

Methods for studying the sensitivity of
climatic models

Hereinafter, we will consider the sensitivity of
climatic models, and it will be clear from the context
what is meant: the sensitivity of solutions of the system
of model equations or sensitivity of functionals of these
solutions. Besides, we will discuss the sensitivity of
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discrete models, i.e., continuum models digitized in
some or other way.

The methods of studying the sensitivity of
mathematic models have received wide development in
the theory of optimal control and identification of
systems.!™4 In meteorology, these methods were widely
used in solution of the problems associated, in their
idea, to inverse problems of mathematical physics and
theory of identification of distributed systems, as well
as to problems connected with estimation of initial
fields and parameters of models from the experimental
information,>~10.etc.

The discrete analog of Eq. (1) obtained with the
use of some discretization method (the detailed review
of these methods can be found in Refs. 11 and 12) has
the following form:

BA, &), + G'(®,,w,) = 0;
o, 0 0MDM, w, 0 R"(DY), 2)

0P
where A;®;, and Gh((Dh,‘Ph) are discrete analogs of ar

and G(®, W), Dl,f is the grid domain corresponding to
Dy, Qh(D/tZ) is the space of grid functions satisfying the
discrete analogs of boundary conditions; RIZ(D/Z) is the
domain of admissible values of the grid functions being
the parameters of model (2).

The discrete model of the form (2) can be
obtained, for example, with the use of the variational
formulation of the problem as some integral identity
following from the definition of the generalized
solution of the problem (1) (Ref. 12):

(P, W, ®*) =0, ® 0 QD).
®* 0 Q*(Dy), WORMDY, 3)

where ®* = ®Z, . is some sufficiently smooth arbitrary
vector-function, and the functional I(®, ¥, ®*) is
chosen so that the descriptions of the model in the
forms (1) and (3) are equivalent in the classes of
sufficiently ~smooth  functions. The process of
construction of discrete analogs of the models in this
case is reduced to discretization of Eq. (3) in the
corresponding functional spaces, i.e., to derivation of
the following equations:

Moy, W), ®}) =0, ©, 0 0"(DY,
®; 0 0*(Dh, w, 0 RMDY, 4)

and to writing down the stationarity conditions for the
discrete analog Ih(th, W,, ®;) of the summatory
functional I(®, W, ®*).

The dimension of the grid functions ®; O Qh(DIZ)
and W, O Rh(D]Z) is expressed through the dimension of
the grid domain D}t' O Dy, and the number of different,
in the physical sense, fields being the components of
the vectors ®.,,> and W, respectively. Taking into
account the structure of the discrete representation of
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Eq. (2) or (4), we renumber one after another all the
components of the vectors W, and ®,,

Wy, = {W}, i = 1(DN;
& = {d}, i = 1(DM, ()

where N and M are the total numbers of components of
the corresponding vectors. Hereinafter, we omit the
subscript £ for simplicity.

Believing that the problem (1) is well posed, we
can assume!!~14 that the class of vector-functions
O =X, t, W) ((x, ) 0D w O R"(DM)
continuously depends on W, i.e., small perturbations &%
of the vector W correspond to small perturbations d® of
the vector @. As the vector dW we take

W= {8y}, i = 1(DN, ¥ + 8W 0 R(DM

under the condition 2dW 2 <<2W o, where 2° 2
denotes norm, and the vector d® is

30 = d(X, t, W+ W) - (X, ¢, W).

Then the problem of determination of the
sensitivity functions! reduces mathematically to
calculation of partial derivatives of the sought solution
or the functionals determined at the set of solutions with
respect to the parameters W of the model in the vicinity
of some unperturbed values Wy. Taking into account the
peculiarities of dynamic processes occurring in the
atmosphere!> and the specificity of the problem to be
solved, we restrict our consideration to estimation of
the first-order sensitivity functions.

The sensitivity functions of the solutions of the
problem (1) can be estimated by one of the three ways:

— by the method of direct modeling;

— with the use of variational equations;

— with the use of direct differentiation of Eq. (1).

In the case considered here, the problem of
estimation of the sensitivity functions is the problem of
estimation (with regard for numeration (5)) of
elements of the matrix

0P py> 00;
H[M’N] - {hif} - oWy WYans>o - @(NJJ‘ @

i=1(1)M, j = 1(1)N. (6)

The main idea forming the basis of the method of
direct modeling is the replacement of the partial
derivatives in Eq. (6) by the ratio of finite differences.
First, we find the value of ®(W;) from Eq. (2). Then,
adding some increment Oy; to the jth component of the
vector Wy, we obtain, upon solution of Eq. (2), the
value of ®(W), where all the components of the vector
W are equal to the components of the vector Wy, except
for the jth component, which is equal to Y + dy;.
Then the jth column of the matrix H is roughly equal
to the column vector
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01(W) — ¢1(Wo)
oy,

2 (W) — ¢ (Wy)
ob;

L1 3y

All the columns of the matrix E[M,N] being an
estimate of the sensitivity matrix
determined in the similar way.

In spite of universality of the method of direct
modeling, it has some disadvantages significantly
restricting its domain of applicability. Presetting small
variations Oy, j =1(1)N, one should expect small
variations 3P = ®(W) — ®(W,), which, generally
speaking, may be comparable with the errors of
numerical integration of model equations. This causes
low accuracy _of approximation of the matrix Hyas nj by
the matrix Hpprny. When presetting large variations
3y, j = 1(1)N, the estimate Hp ny is coarsened in the
case of the nonlinear dependence of ® on W. What’s
more, this method requires voluminous calculations,
and thus it can hardly be implemented in practice.

With regard for the above-said, the method of
direct modeling can be recommended for estimating the
sensitivity of the solutions of Eq. (2), which depend
linearly on a small number of parameters.

The method based on solution of variational
equations proposed in Ref. 12 is free of the two first
disadvantages mentioned above. In Ref. 12, the
equation relating the variations d® with the variations
O0W was obtained from the condition of stationarity of
the summatory functional (4) with respect to the
variations d® and dW, i.e., from the condition

L]

Hip Ny are

lnn & o, + 850, Wy + 88W, d*) =0.  (7)

Assuming the stationarity of the left-hand side of
Eq. (7) with respect to the variations of ®*, we obtain

BA, 80 + A"y, Wy) 5® + C"(dy,Wy) 8W =0, (8)

where the M x M matrix A” and the M x N matrix C"
are determined as follows:

AFM,M]((D<M>07 l'p<N>()) =

— — lim3; G (v +ED s, W );
a¢<M>E 0 az <M> <M>( E <M> <N>(

C{?M,M](¢<M>0y l'IJ<N>()) =

0 :
lim 77 Geps (P LY +EW_oys),
an<M> -0 02 <M> <M>0 <N>0 E <N>
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where (D'<M> and '~P'<N> are arbitrary vectors with the
i=1()M, and @, j=1(DN,
respectively, such that ® ypmqg+EDpys O Qh(DlZ),
Wonso+ EWens O Rh(Dltl) at small &.

Equation (8) is linear with respect to d®<ps~ and
dW.y>. Taking into account the definition (6) of the

;
components ¢,

sensitivity functions and the fact that
5¢<M> = ¢<M> (qJ<N>0 + 6qJ<N>) - qJ(qJ<N>()), we
have
" _ 0P s> _ 00D s>
LMN OW<n> Wonso N esLI"<A\r>0.

Upon differentiation of Eq. (8) with respect to
dW.n>, we have

BA; H + A"y, W) H = - C(dy, W) E,  (9)

where E is the unit N x N matrix (subscripts in
Eq. (9) are omitted for simplicity).

The set of equations (2) and (9) forms the set of
equations of sensitivity of the discrete model
corresponding to the continuous model (1).

As was already noted, the method based on the
use of the variational equations is free of disadvantages
inherent in the method of direct modeling, except only
for cumbersome scheme of realization. Actually, the
number of calculations of the function ®(W + d¥) by
the method of direct modeling is equal to the number
of equations with respect to the functions ®y(W,) and
0D(W) /0;, j = 1(1)N in the set (2) and (9).

This disadvantage can be eliminated taking into
account the following circumstances. Usually, the study
of the sensitivity of models is a preparatory stage for
identification of the parameters of the models. As a
result of solution of the identification problem, we have

the vector Wfﬁ; of the best (in some sense) values of
the parameters. The dimension of this vector is usually
rather large. Therefore, for its convenient storage and

further use, Wi{}i (being a grid function) is usually
approximated by some few-parameter spatiotemporal
dependence. That is, the function

t t
$£]3> = lg<n> (X<3>,t§ |_|<01£)[>), (10)

is determined, whose projection onto the space of grid
functions, to which W<y belongs, is close to the grid

function wg{’,& in a pre-fixed sense and satisfies the
condition

k <<N.

In addition, some parameters entering into Eq. (1)
(for example, dissipation parameters, heat influxes, etc.)
are often available in the analytical form

LIJ'<n'> = llJ'<n,> (X<3>, t; n'<k'>), (1)
and

l'IJ<n> = <l'p’<n'>y LIJ:n,,>>, (12)
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" .
where n' +n" =n, and Wgu- is the vector of

parameters not given in the analytical form (11). Note

that in Eqs. (10) and (11) the components of the vectors

opt
N2k and Ny are scalars.

When solving the identification problems with
following determination of the dependence of the
form (10), this problem can be reformulated into the
problem of identification of just the parameters M<ps
entering into the continuous model of the atmosphere

0P(X, ¢, M)
ot

® 00Q(Dy), NOR(DY.

+G(X, t, N, ®) = 0; (13)

Statements of such identification problems and
their solutions are considered in Refs. 10 and 16. The
problem of studying the sensitivity in this formulation
is considered in Ref. 9.

Equation (1) takes the similar form in the case

(12)

(X, t, N, ¥
B ( )

m +GX, t, N, &, W) =0; (14)

® 00Dy, N'OR (DY, W OR"(Dy.

Below we consider the problem (14), because it is
more general. The problem of estimating the sensitivity
is reduced in this case to estimation of the sensitivity of
® to the parameters W' and M'. The sensitivity of the
solution of Eq. (2) to W' is studied by the methods
considered above.

If the problem (14) is well posed and the
conditions of continuous differentiability of the

operator G(X, t, ', ®, Y") with respect to M' in the
domain R'(D,) are fulfilled, then according to Ref. 5
the solution of the equation

a 1] a U "
By Hi+ — G(X,t, ", d, ¥)

ot =0 (15

'

n'=g
W=y

exists and is the function of the sensitivity of the solution
of Eq. (14) to T at M’ = My, W' = W, i.c.,

0P py>

Hi=Hoys; = ort

n'=ng
W=y

Upon differentiation of the second term in the
right-hand side with regard for the conditions M’ = M
and W' = W, we obtain

B%H; + G (X, t, Mgy, ®y, Wy, H) =0, i=1(DE,(16)
where ®) = ®(X, ¢, My, Wy), and G' = G,,> is a vector

differential operator obtained from differentiation of
the operator G with respect to .
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The set of equations (14) and (16) is the set of
equations of the model of sensitivity of the model (1)
to the components of the vector M'. The function of
sensitivity of the discrete model (2) to the components
of the vector M at N' = I'I('), W' = lP'('), is the M x k'
matrix H':

Hipp = {hl-'f}, i=1(D)M, j=1(Dk, U7

whose components are the values of the ith element of
the solution of the jth equation of the set (16).
Denote the matrix of sensitivity of the discrete

model (2) to variations of the parameters W.,
(N" =n" L, where L is the number of nodes of the grid

n

domain) as Hpps n1. The total number of equations of
the form (9) and (16) to be solved for estimating the
sensitivity of the model (2) in the case that the
parameters are given in the form (11) and (12) is
k' + N". Taking into account the fact that
P <N =nLand N=N + N", we can conclude that
estimation of the sensitivity of the model (2) is far
more efficient, if its parameters W are given analytically
as functions of spatial coordinates, time, and some
numerical parameters.

If the matrices Hipny (Hipr ) and Hipnep) are
estimated, then the variation d®ys of the solution of
Eq. (2) corresponding to the variation 3Wens (3M<ps

and dW.nrs) is calculated as

8Ppr> = Hipg Ny OW<n> (18)
or
6(D<M> = H'[M,k'] 6r|,<k'> + H,['M,N"] 5‘“21\/'5- (19)

Now we pass on to the solution of the problem of
estimating the sensitivity of the functionals of the
solutions of Eq. (2). Let I(®) be the functional of ®,
which is thought, for definiteness, to be directly
dependent on the components of ®. Because ® depends
on W, this functional always depends indirectly on the
components of the vector W as well. The variation 8 of
the functional I is sought as a function of the variations
0® and oW.

On the assumption of the limited and continuous
dependence of the functional 7 on ® (just this case is of
interest in solution of a wide variety of applied
problems), in the general case we can determine the
vectors

/(P
aradel (®) = @%T)D i—1OM, 0

gradpl(®(W)) = H ’%”)Q, J=1(ON Q1D
7

and in the particular case, when W is described by
Eqgs. (11) and (12), the vectors

(opg .
gradel (@) = %Q, i=1(1)M, (22)
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gradm (o) = PLOODB (e, (23)
o om 0O
and

gradynl (@(w) = P (‘;’:J“’ 2= 1N o)
J

Because of the direct dependence of I on ®, the
vectors (20) and (22) can be written down in the
explicit form. Then

81 (5 gy, = (gradel (D)o, 8P),  (25)

where (+,+) denotes a scalar product.
Similarly (in the general case)

S (BW) gy, = (gradul (D(W) Dy, W) (26)
or, taking into account that
gradel (P(W)) Oy, = gradwl (P)y_gy,,
81 (BW) Gy, = (gradul (P)pog, W) (27)
In the case (11), (12)
81(8M) Ty, = (gradp /(P Dg_gy, 3D, (27')
SI(BW) By = (gradyrl(®) g, B¥N. (277

We  obtain  the explicit equations for
gradp/(®(W)). Upon substitution of the expression for
O® from Eq. (18) into Eq. (25), we have

BI(8P) Llpp—gy, = DI (BP(BW)) Llpp—gy, = B (BW) gy, =
= (grado!(®)Op—g,, H13W). (28)
Taking into account the Lagrange identity

(X, AY) = (AT x, V),

where T denotes transposition; X and Y are arbitrary
vectors; A is the matrix of the dimension corresponding
to the dimension of the vectors X and Y, Eq. (28) can
be written as

BI(8D) (g, = (H' gradol (P, BY).  (29)

Comparing Egs. (29) and (25), we come to the
conclusion:

gradyl(D(W)) Oy, = H' gradel(®)p_g,. (30)
Similarly,

gradn (O )y, = H gradol (®) gy, (3D

grady [(OW ) Oy = H' gradol (®) gy, (32)

where H' is the matrix determined by Eq. (17), and the
matrix
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- [ o0, O
H =Hipyn= U7 0 0, i=1(1)M, [ = 1(1)N".
[]0W1|@=ao[]

Equation (30) (or (31), (32)) allows one to
calculate the sensitivity of the functionals of the
solutions of Eq. (2) to variations of the parameters of
atmospheric models. Note that the sensitivity of
functionals to variations of the model parameters can be
also estimated using the apparatus of the theory of
conjugate equations in partial derivatives, 121718 but
this approach gives no significant advantages as compared
to the use of Egs. (20), (30), (31), and (32).

Note that in the above equations the gradient of the
functional in its arguments was thought to be a column
vector. This is in some disagreement with the
assumptions used in differentiation of vector fields.
Taking into account this remark, it is easy to write
equations, in which gradient is a row vector. However,
calculations in this case are very cumbersome due to a
great number of transposition signs.

Conclusion

The proposed mathematical apparatus for
estimating the sensitivity of climatic models presents a
possibility of more adequate estimation of climate
change tendencies under conditions of a priori
uncertain parameters affecting the evolution of climatic
system. In this case, the current state of the climatic
system should be used as the initial state. This state can
be evaluated by processing climatic information. In this
connection, there is no need in its realistic
reconstruction with some climatic model. The last
circumstance is the obvious advantage of the proposed
approach to the study of climate tendencies on both the
global and local scales.

The scheme of estimating the climate tendencies
with the use of the proposed methods is the following.
First, using the sensitivity model, the sensitivity of the
studied climatic characteristics to variations of the
interesting parameters is estimated. The sensitivity
model uses currently observed climatic characteristics
and the values of parameters. Then, realizations of
parameters of the factors affecting the evolution of the
climatic system are modeled based on @ priori
information on their distributions. Then, using
Eqs. (18) and (27), variations of the studied
characteristics are estimated, and, finally, the obtained
results are statistically processed in order to determine
numerically the distributions of the characteristics of
our interest. Such a scheme, unlike the similar one
described above, keeps the advantages of the method of
imitating modeling, but does not require huge
computational resources.

To check the efficiency of the proposed method,
we have conducted a series of numerical experiments
based on the following assumptions.

As known, the middle atmosphere affects
significantly the processes of formation of the global
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climate and determines the tendencies of its change.
This is caused by the fact that most active gaseous
constituents of the atmosphere, such as carbon dioxide
and ozone, affecting the radiative balance of the
atmosphere, are concentrated just in the middle
atmosphere. On the other hand, atmospheric tides refer
to the basic processes occurring in the middle atmosphere.
In this connection, in our experiments we studied the
sensitivity of the model of established tide motions to
variations of the parameters.

The considered model takes into account all
known physical phenomena affecting the
thermodynamic conditions of the middle atmosphere,
such as viscosity, thermal conductivity, radiative cooling
in the longwave spectral regions, and hydrodynamic
effects. The diffusion processes were parameterized
within the framework of the Rayleigh friction.

The parameters entering into the description of
dissipative effects, namely, the parameters determining
the degree of atmospheric turbulence, affect most
significantly the variations of the state of the middle
atmosphere due to wave processes.

The tide models especially often use, as
parameterization of turbulent diffusion, the
parameterization, in which the contribution of the
turbulent exchange to the Rayleigh friction coefficient
is described by some function of height and three
parameters: the value (at the turbopause) of the
addition 0p due to turbulence to the Rayleigh friction
coefficient, the height z; of the turbopause bottom, and
the height z9 of the turbopause top. The values of these
parameters proposed by different authors differ
significantly. This is connected not only with
imperfection of the techniques for determination of these
parameters from the experimental data. It seems that
such a spread in the values of these parameters has
some physical basis. In this connection it is interesting
how sensitive are tide characteristics to variations of
these parameters.

Figure 1 shows the functions of sensitivity of the
amplitude of diurnal variations of the zonal wind.
These functions were obtained with the use of the
sensitivity model developed using the proposed
approach.

The analysis of the results shown in the figure
suggests that they are in complete agreement with the
theory stated, for example, in Refs. 19 and 20. Thus,
the fields of the amplitudes are maximally sensitive to
the parameter 0( characterizing the degree of
atmospheric turbulence at the height of the turbopause.
The maximum sensitivity to the turbopause bottom
height z; is below the turbopause. This is connected
with the presence of tide modes reflected down from the
turbopause in the wave fields. The sensitivity to the
turbopause top height is almost absent below the
turbopause. This indicates that the turbopause even
with its insignificant thickness is the main factor of
formation of wave motions in the height range from 50
to 90 km.
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Fig. 1. Functions of sensitivity of the amplitude of diurnal tide variations of the zonal wind velocity to variations of the

parameters: oy 010°, (m/s) /s7! (@), zy, (m/s) /km (b), z, (m/s) /km (c).
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