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for optical wave propagating through the turbulent atmosphere
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The algorithm for phase unwrapping from the principal value of the phase gradient is proposed.
The efficiency of this algorithm is studied using, as an example, adaptive focusing of an optical wave
propagating through the turbulent atmosphere under conditions of strong scintillations of intensity.

Introduction

Numerous problems of interferometry, image
restoration, and adaptive optics involve reconstruction
of a wave phase (phase unwrapping) either from its
principal value or from the gradient of its principal
value. In the first case, for example, for interferometric
synthetic aperture radars (SAR), the phase unwrapping
problem!=3 is formulated as follows: to find the
estimate §(i, k) of the 2D phase ¢(i, k) given by its
principal value (i, k)

Wi, k) = P0G, k)] = o, k) = 2T, 1)

where i and k determine the pixel location in a 2D
array of discrete phase values, the operator P[...] means
reduction of the function in the brackets to the interval
[, 1] of the phase principal value.

The true value of the phase cannot be
reconstructed without recourse to some assumptions,
and we have a trivial solution ¢ = . Therefore, to
obtain the estimate @, it is usually assumed that the
phase ¢ has no discontinuities, i.e., its values at
neighboring nodes of the discrete grid differ by no more
than + 10 It can be shown that in this case the gradient
of the principal phase value W limited by its principal
value coincides with the gradient of the true phase @
(Ref. 2):

WG k=0 Gk, (2)
where

(WG + 1, k) — (i, k)]

WG, k+ -G 0 ©

W G, k) =

The true phase can be found from [ by

integrating [y along an arbitrary path.

The situation changes in the presence of strong
phase noise and violence of the condition < * 1 imposed
on the phase difference between neighboring nodes. Then

the field of the gradient W ceases to be conservative
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W #0
and includes a solenoid component
Ox@p #0, (4)

and the result of integration of W begins to depend on
the selected path of unwrapping.

In the theory of interferometric SAR, two methods
are largely used for determining the phase ¢: the
branch-cut method!3 and the least squares method
(LSM).23 In the branch-cut method, regions with
W #@ are identified in interferograms, and the
unwrapping path is selected so as to bypass these
regions. The solution obtained in such a way is
ambiguous and depends on the way of cutting.3 In the
least squares method, the difference between I and
[ is treated as a noise

ﬁ]} =0 +ng

and the estimate of the true phase is sought by
minimizing the square form

S Y 106 G, k) — W G, k)2, (5)
k

1

The variational problem (5) is equivalent to the
finite-difference representation of the Poisson equation

00o0¢ =0 OP (6)

with the Neumann boundary conditions. The solution of
this equation and, consequently, the least squares
method of estimating the true phase can be readily
implemented on a uniform grid with the use of Fourier
transform.4 The boundary conditions in Eq. (6) for
phase differences are set with the help of periodic
extrapolation of the sought function beyond the domain
of definition by mirror reflection of the initial grid
function to the double-dimension grid. 412,16

The problem of phase unwrapping from the
principal (wrapped) value of the gradient of the
wrapped phase arises when using interferometric or
Hartman sensors to measure the wave phase front in
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adaptive optics systems. In the discrete representation,
the phase gradient is written as

Pl +1, k) — (@, k
oG k) = (Wi d) (i, k)] -

PlYG, k+ 1) — Wi, k)]
e @

where d is the distance between neighboring grid
nodes; e, and e, are unit vectors. However, if the field
of the phase gradient is nonconservative, then the least
squares method, being usually applicable to phase
estimation by difference of phases determined from
local slopes, leads to some loss of useful information on
the phase, because in this case the method does not
allow the solenoidal component of the phase gradient
(4) to be taken into account and the so-called hidden
phase to be reconstructed.?

Actually, if we represent the vector field of the
phase gradient g as a sum of the potential g, and
solenoidal g; components and then apply the divergence
operator to it,% then the solution (5) of the resulted
Poisson equation (6) corresponds only to the potential
part of the field g: 0¢ = g,,. In this paper, we propose
the algorithm for phase unwrapping from the wrapped
phase gradient and study the efficiency of this
algorithm using, as an example, adaptive focusing of
the optical wave propagating through the turbulent
atmosphere under conditions of strong intensity
scintillations.

1. Algorithm of the hidden phase
unwrapping

The conservativeness of the field of the optical
wave phase gradient (4) is violated in the turbulent
atmosphere because of random distortions of the wave
field at the medium inhomogeneities, which lead to the
loss of spatial coherence and give rise to intensity
scintillations. At long-distance propagation of the
optical radiation, scintillations of the intensity become
strong,” and a speckle structure arises in the plane
transverse to the propagation direction. This structure
includes areas with zero light intensity, and the phase
becomes discontinued and having spiral singularities
(branchpoints) called wavefront dislocations.8 The
characteristic feature of a dislocation at some point is
that the principal value of the phase gradient changes
by * 2m when passing around this point by a closed
loop. Thus, using Eq. (7), we can writed:

gli, k) eyd + gli + 1, k) Tkyd -
-8l k+ 1) ed — gl k) yd =

_ %21‘[, if a branchpoint is inside the loop , (8)

, if there is no branchpoint inside the loop.

Positive and negative branchpoints arise in pairs
and are connected with each other through
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discontinuities of the phase surface in the areas with
low wave intensity.

In the case of continuous functions, using the
Stokes theorem, Eq. (8) can be rewritten as

g(r)dr = J dre, M x g(r) =
¢ D

B %21‘[, if a branchpoint is inside the loop ,
" [, if there is no branchpoint inside the loop,

9

where C denotes the boundary of the surface D. The
loop C around a branchpoint can be selected arbitrary
small, and the integrand in Eq. (9) can be
approximated as4:

e, 1 x g(r) = £ 21n&r - ry,p), (10)

where the vector ry;, determines the phase branchpoint.
Representing the phase gradient in the form

g(r) = g,(r) + gy(r) (11)

and applying the rotor operator to it
O x g(r) =0 x g(r), (12)

we find that violation of the conservativeness of the
phase gradient field is connected with nonzero rotor of
the solenoidal gradient component.295

From Egs. (10) and (12) it follows that

e, 1 x gy(r) = % 21my(r — ry,p). (13)

Represent the estimate of the true phase in the form?
O(r) = Grsme(r) + Ppia(r), (14)

where §igme(r) is the estimate of the true phase by the
least squares method (5), which corresponds to the
potential component of the phase gradient gp; dpiq(r) is
the hidden phase determined by the solenoidal phase
component g,. Applying the gradient operator to the
right- and left-hand sides of Eq. (14), with allowance
for Eqs. (11) and (13), we have

0 x Ofpig(r) = £ 2ndr — rpp)e,. (15)

The solution of this equation is presented in Ref. 5; it
has the form

Opia(r) = Im{x log[(x — xy,p) + iy — ypp) 1} (16)

In the general case, keeping in mind that positive
and negative branchpoints arise in pairs, for ¢p;q we
have3:

K

L OG- - ity - g0

$nia() = Im [Jlog [an
D Eﬂ(x —xp) —i(y — yk)[ﬂ]

where xy, ¥, and x, y, are respectively the coordinates

of positive and negative phase branchpoints; K is the
number of pairs.



V.A. Banakh and A.V. Falits

Vol. 14, No. 5 /May 2001,/ Atmos. Oceanic Opt. 385

I
|

<

7l

‘ s
= = '--;.___;,é‘:éa_ B
5 g ek 2,86 Eoaiah, B
B T X B G foocsineoimine,  Dods,
2 e G e
ot p et DOSRENIRNR . o
- ;:;:;z;z:g.::oz:.,_zz;z;:;.:;#‘\;::::::;:gsgatt VN el D
c,,,.,,‘.‘.,',‘,‘.,o,,‘.,.",.‘,‘,.\,‘ -3.14 STyl ,4,,,%“,%‘0
ATt | B EEienes Ay I S O T
SRR 5% CErlay bty 9@@'@&““‘
5 t;,:: 00:"‘0‘:“

=
=
R o 5
o e LS
et iRy
gt e Sy
oy £
LR,

-5

[

Wi oot e 5 y -
S 4
LS IR IRITISE K,
PO st
RIS

P
o0

A
A

%
iy
e

"
A

f
0
Ry
o
&
G

| 9555wy
Oy e
Bstesereress
ety

f
:’,:
0

%

g
e
s

=

e

3
S
=

==

i
el
e
e oy

FeFeest
SRy
e

e
e, SN
e

Fig. 1. Phase estimated by the least squares method with allowance for the hidden phase.

Figure 1 illustrates the performance of the least
squares method in phase unwrapping. Figure 1a shows
the phase function having discontinuities, and Fig. 1b
shows the principal value of the true phase described by
Eq. (1). Calculating the loop integral (8), we can find
three pairs of phase branchpoints, whose location is
shown in Fig. 1c. The hidden phase (Fig. 1d) is
calculated by Eq. (17). The phase estimate by the least
squares method is shown in Fig. le. The phase
constructed as a sum of @jgpe in Fig. 1e and p;q in
Fig. 1d by Eq. (14) is shown in Fig. 1f.

2. Reconstruction of the hidden phase

2.1. Formulation of the problem of numerical
simulation

The efficiency of the above-described phase
unwrapping algorithm was studied, using adaptive
focusing of a wave propagating through the turbulent
atmosphere as an example. The problem was considered
in the following formulation. A collimated light beam
with the Gauss amplitude distribution in the initial
plane propagates through the atmosphere. The

turbulent conditions of propagation are characterized by
the parameter

B3 = 1.23 C2 k7/6111/6, (18)

where C2 is the structure characteristic of fluctuations
of the air refractive index, k= 2m/A is the wave
number, A is the wavelength, L is the path length. The

parameter Bé is the dispersion of intensity scintillations
(scintillation index) of the plane wave. It is calculated
in the first approximation of the method of smooth
perturbations. 10 This parameter is widely used as a unit
of the intensity of optical turbulence.” The path
terminates in a collecting lens, in front of which is
situated a phase corrector.

The numerical experiment on focusing the
radiation passed through a layer of a turbulent medium
was conducted for different schemes of correction of
phase distortions: ideal phase conjugation that
instantaneously and exactly reconstructs the wave
phase; compensation for distortions of the phase
reconstructed by the least squares method from phase
differences; the correction based on the phase
unwrapping by the least squares method from phase
differences with allowance for the hidden phase; and,
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finally, absence of phase correction. The efficiency of
phase correction is estimated by the Strehl ratio

St =1/1I,, (19)

which is the ratio of light intensity at the lens focus for
a beam propagating through a turbulent (/) to the
homogeneous medium (Ip). The scheme of the
numerical experiment is shown in Fig. 2.

Wave path
¢ —>
5_
— % 5
88
— 8. = -
88
24
—H 58
2
Gauss L L L
Random
beam phase screen

Fig. 2. Simulated adaptive focusing of the wave passed
through a homogeneous turbulent layer.

Propagation of the light beam through the
turbulent medium was simulated by solving numerically
the parabolic equation

oU(z, p)
—+

2ik 9

+ AUz, p) + 2k2H(z, p) Uz, p) = 0, (20)

where U(z,p) is the complex amplitude of the field,;
02

02
p=(x,y); Op= 2 a_yQ ; I is the fluctuating part of

the refractive index; the beam propagates along the axis
z. The beam path was divided into layers each having
the thickness Az. A random phase screen was modeled
at the front boundary of every layer. Having passed
through this screen, the beam acquired phase
distortions. Then the beam diffraction inside every layer
was calculated with the use of the fast Fourier
transform.

The phase screen was modeled by the following
equation:

8(jAx, IAy) =
N, N,
=5 5 la(n,m) + ib(n,m)] %Tfl +—DD 1)
n=0m=0

where Ax and Ay are the distances between the nodes of
the computational grid along the coordinates x and y;
N, and N, are array dimensions; L, =AxN, and
L, = AyN, are dimensions of the computational grid;
a(n, m) and b(n, m) are random uncorrelated series with
the variance

&?(n, m)O= *(n, m)0= Aq.Lg,Pe(ndq,, mbDg,, 2),

where ®g is the spectral density of phase fluctuations;
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__2n 2
A =N ax N,y
the spectral region. The spectrum of phase fluctuations
is given by the equation

Doy, Gy, q.) = 2TR?Az®,(q,, 9y, G,=0,2), (22)

and Ag, = determine the grid step in

where
®,(q) =0.033 Cn g 11/ 3 exp (- q2/q1%) (23)

is the spectrum of turbulent fluctuations of the
refractive index; g =|q|, qm = 5.92/1y, Iy is the inner
scale of turbulence.

The algorithm of the phase screen modeling (21)
does not allow us to account correctly for the
frequencies lower than the value determined by the grid
step in the frequency region Ag, and Aqg,. This leads to
errors in modeling of large-scale phase fluctuations.
Therefore, for modeling the phase screen near the zero
frequency, we used the method of subharmonics.!!
According to this method, the equation for 6 has the
form

Ny A 1
04, GAx, IAy) = Zl > > la(n,m,p) + ib(n, m,p)] x

p=1 n=—1m=—1

. jn + om Im 0
3N, 3N, LT

24)

where

@2(n, m, p)OF %(n, m, p)F AqprqprDe(nAqxp, mAqyp),
n#0, m#0. In modeling, we took N, =3, and the
Aqy

A9 /]
- and Aqyp— v

grid step was determined by Aqxp =3
2.2. Hidden phase and efficiency of adaptive
focusing

The effect of the hidden phase on the efficiency of
phase correction was studied in Refs. 12—16, where it
was concluded that the efficiency of adaptive systems
decreases markedly if the correction technique ignores
the “vortex” component of the phase. However, in
Refs. 12—14 and 16 the vortex component itself was not
reconstructed from the phase differences measured by
wavefront sensors. What’s more, in Refs. 12 and 14 it
was noted that the attempts to account for the hidden
phase from the phase differences using the algorithms
from Ref. 4 failed. Unlike Refs. 12-14 and 16, our
calculations of the adaptive focusing efficiency are
based on the results of reconstruction of the hidden
phase with the use of the above algorithm, and they are
obtained in a wider range of values of the parameter Bj.

Figure 3 shows the plots of the Strehl ratio as a
function of the scintillation index (18) for the case of a
plane wave propagating in the turbulent atmosphere.
Figure 4 shows the similar results for the collimated
Gaussian beam with the Fresnel number of the
transmitting aperture Q = ka?/L ranging from 90 to
4.5, where a is the initial beam radius.
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N, x N, = 128x128

N, x N, =512x512

0 20 40
Scintillation index of plane wave

b

Fig. 3. Strehl ratio as a function of the scintillation index at
plane wave focusing: no phase correction ), ideal phase
correction ( ), LSM correction (—--=), correction
with allowance for the hidden phase ( ).

It is seen from Figs. 3 and 4 that allowance for
the hidden phase in the phase unwrapping improves the
efficiency of the adaptive focusing in the region of
strong intensity scintillations B§ > 2 in the case that the
density of dislocations increases markedly as compared
to the phase unwrapping by the least squares method.
If the efficiency of adaptive focusing based on the phase
unwrapping by the least squares method decreases as
the turbulence (parameter B§) on the path increases,
then the allowance for the hidden phase keeps the
Strehl ratio in the region of strong fluctuations at
roughly the same level. In the case of a collimated
beam, the allowance for the hidden phase gives the
results for the Strehl ratio that almost coincide with
the results given by an ideal phase corrector. This
points to the high efficiency of the implemented phase
unwrapping algorithm.

Locations of the branchpoints in the phase
distribution were sought according to Eq. (8) by
summing phase differences (gradients) along the path
determined by the step of the computational grid. The

Vol. 14, No. 5 /May 2001,/ Atmos. Oceanic Opt. 387

phase was estimated by Egs. (5), (14), and (17). From
comparison of the results calculated at N, = N, = 128
and 512 and shown in Figs. 3 and 4, it follows that the
pattern keeps qualitatively the same as the step of the
computational grid changes.

1 St

05 | N, x N, = 128x128

0.5
N, x N, = 512x512

1
0 20 40
Scintillation index of plane wave

b

Fig. 4. Strehl parameter as a function of the scintillation
index at Gaussian beam focusing: no phase correction

( ), ideal phase correction ( ), LSM correction
(—--=), correction with allowance for the hidden phase
( ).

Nevertheless, the phase unwrapping algorithm not
always gives good results. It is seen from Fig. 4 for the
curves corresponding to the Strehl ratio in the case of
correcting the phase reconstructed by the least squares
method with allowance for the hidden phase, where
some points lie significantly lower than others. Let us
dwell on possible causes of such discrepancies.

2.3. False cuts

If the principal value of the phase Y is known, for
example, from the results of numerical solution of
Eq. (20) for the complex amplitude of the field, then
the hidden phase can be calculated as

¢hid =P v - @Isme] . (25)
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Fig. 5. True hidden phase and location of phase branchpoints (@) and hidden phase calculated from the determined

branchpoints ().

The hidden phase thus determined was compared
with the hidden phase calculated by Eq. (17). The
efficiency of adaptive focusing with the algorithm
employing Eq. (25) proves to be just the same as in the
case of ideal phase correction. Figure 5 shows the
hidden phase and its profile calculated by Egs. (25)
and (17).

It is seen from Fig. 5 that for this example the
both approaches give almost the same results. So, the
calculated efficiency of adaptive focusing with the use
of Eq. (17) accounting for the hidden phase is close to
the efficiency of focusing with the use of an ideal
corrector. However, this is not always the case.

The point is that the hidden phase is reconstructed
from the coordinates of positive and negative
branchpoints. When seeking the branchpoints, the
integration loop in Eq. (8) cannot be taken infinitely
small — it always has finite size determined by the grid
step. As a result, reconstruction of the hidden phase by
Eq. (17) can introduce an error. Figure 6 shows
schematically the situations, which may arise when
determining the coordinates of the phase branchpoints.

It is seen from Fig. 6 that if both the negative and
positive branchpoints are inside the loop A, then the
loop integral equals zero and the both branchpoints

cannot be detected. So, the algorithm for detection of
branchpoints gives an error. This error can be
neglected, if the loop contains paired points connected
by a phase cut, because the length of this cut is short.

Fig. 6. Scheme of possible formation of false cuts when
calculating the hidden phase by Eq. (17).
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Fig. 7. Formation of false phase cuts: true hidden phase (¢) and hidden phase with a false phase cut (b).

The loop B also contains two phase branchpoints,
but they are not connected by a phase cut. The loop
integral in this case is also zero. When calculating the
hidden phase, the negative point inside the loop C is
connected by the phase cut with the positive point
inside the loop D. Thus, a false phase discontinuity is
reconstructed.

Paired points may also be located beyond the
computational grid. The point in the loop E is
connected with the point located beyond the domain of
consideration. The situation with the point inside the
loop F is just similar. When calculating by Eq. (17),
the positive phase branchpoint in the loop E is
connected by a false cut with the point inside the loop
F. If the number of such false discontinuities is large
enough, then the hidden phase calculated by Eq. (17)
may differ widely from the result given by Eq. (25).

In numerical simulation, the above situations
connected with appearance of false phase cuts can be
traced. Figure 7a shows the hidden phase and its profile
with branchpoints found according to Eq. (25).
Figure 7b shows the surface and profile of the hidden

phase calculated by Eq. (17) wusing the found
branchpoints. It is clearly seen where the hidden phase
found by Eq. (17) coincides with the true hidden phase
and where the false phase cut is located.

Conclusion

In this work, we have implemented the algorithm
of phase unwrapping from the principal value of the
phase gradient and examined its efficiency using, as an
example, adaptive focusing of a wave propagating
through the turbulent atmosphere under conditions of
strong scintillations of intensity. Despite the fact that
false phase cuts may sometimes be formed when using
this algorithm, its efficiency is high on the average.

The accuracy of this algorithm can be improved.
For example, decreasing the distance between the nodes
of the computational grid (increasing the resolution)
we can decrease the number of false phase
discontinuities. The error connected with boundary
points can be eliminated by excluding unpaired points
from calculation of the hidden phase by Eq. (17).
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