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Expressions are derived for the accuracy of phase restoration in the processing of a 
series of short-exposure images, distorted by the atmosphere, of an object. It is shown 
that in the practically important two-dimensional case the accuracies of the methods 
studied are the same and close to the potential accuracy. 

 
 

In the last ten years the comparatively new 
method of triple correlations (MTC) has been under 
active discussions in scientific circles concerned with 
the development of methods of speckle interferome-
try — postdetector restoration of the image of a re-
mote object from a series of short-exposure realiza-
tions distorted by the atmosphere and detection 
noise.1–6 This method, which supplements Labeyrie’s 
method,7 for restoring the modulus of the Fourier 
spectrum of an image makes it possible to obtain the 
Fourier phase. From this standpoint it can compete 
with the previously proposed8 Knox-Thompson 
method (MKT), studied in Refs. 9–11. At the first 
stage many investigators believed that the MTC is 
much more accurate (though more difficult to im-
plement) than the MKT and will replace the latter. 
The results of further in-depth theoretical investiga-
tions, supported by statistical modeling on a com-
puter,3–5 cast serious doubt on this. In this paper we 
study this question for the case when the detection 
noise is weak and atmospheric distortions of the im-
ages play the main role (the case of a bright object). 
 

FORMULATION OF THE METHODS 
 

The Fourier spectrum ( )J f


 of a short-exposure 
image (SI) is given by the expression 
 

 (1) 
 
where O(f) is the Fourier spectrum of the image of 
the object and H(f) is the optical transfer function 
(OTF) of the atmosphere-telescope system. Under 
the usual assumption D p r0, where D is the diame-
ter of the aperture of the telescope and r0 is Fried’s 
parameter, which characterizes the average size of 
the region in which the atmospheric distortions of 
the optical radiation field are correlated, the OTF is 
a normal random quantity12 with the average 
 

 (2) 
 
where 
 

 (3) 
 

is the OTF of the telescope, ( )W v


 is the aperture 
function and is equal to unity within the aperture 
and zero outside it; ( )aS dvW v 

 
 is the area of the 

aperture, and  is the wavelength. 
Eq. (2) shows that in the region of high spatial 

frequencies f > fa = r0/, which is of greatest prac-
tical interest, the average spectrum approaches zero. 
Because of this the methods employed to extract 
information in this region must be based on the for-
mation of correlation functions of second and higher 
orders. Thus in Labeyrie’s method the Fourier 
modulus is estimated from the expression 
 

 (4) 
 

The transfer function of the method 
2

( )H f


 

differs appreciably from zero in the entire diffraction 
frequency range, and for f > fa it is given by12 
 

 (5) 
 
where n = 26/5(D/r0)

2 is the effective number of 
regions of correlation of the atmospheric distortions 
within the aperture. The accuracy q0 of the method, 

which is characterized by the ratio of 
2

( )J f


 to 

the rms error in estimating it from M recorded im-
ages, is given by the expression10 

 

 (6) 
 

To obtain information about the Fourier phase a 
correlation function of the form 
 

 (7) 
 
is formed in the MKT and a function of the form 
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 (8) 
 
is formed in the MTC. The transfer functions of 
these methods in the region of high spatial frequen-
cies are approximated as3–5 
 

 
 

 (9) 
 

 
 

(10) 

 
where 
 

 (11) 
 

(12) 
 

Because atmospheric distortions are isotropic their 
phase is zero. As a result we obtain for the phase 

( ) arg ( )f O f 
 

 difference equations of the form 
 

 (13) 
 

 (14) 
 
where 
 

 
 
The phase  is reconstructed by solving these equa-
tions and by supplementing the phase with the 
modulus. The distorted image of the object is ob-
tained by taking the inverse Fourier transform. 

Before we estimate the accuracy of the restora-
tion we must make some preliminary remarks. 

1. In the absence of measurement error  is re-
stored from the system (13) uniquely ((0) = 0) and 
from the system (14) to within an arbitrary linear 

term of the form .a f


 However since this term cor-
responds to a shift of the image without a change in 
its structure this arbitrariness is unimportant. At the 
same time, an important preliminary operation in the 
MKT is combining the short-exposure images being 
averaged, for example, with respect to their- center 
of gravity. The errors that are admissible in combining 
the short-exposure images are determined as one tenth 
of the average size of the images. The MTC is not sen-
sitive to displacements of the short-exposure images. 

2. The values of  and  are measured with an 
accuracy of up to 2. To eliminate any possible uncer-
tainty when restoring  in practice it is best to work 

with exp{i  } instead of . In what follows, however, 
to simplify the mathematical calculations we shall 
ignore this uncertainty. 

3. The signal-to-noise ratios (SNR's) and qE 
(measurements of the functions (7) and (8) from M 
recorded short-exposure images) are determined by 
the expressions3,5 
 

 (15) 
 

 (16) 
 

The correlation functions of the errors in the 
measurements of the phase differences are approxi-
mated as 
 

 (17) 
 

 
 

 (18) 
 

where the variances 2
  and 2

  are related with the 

SNR's qE and qT the relations3,9 
 

 (19) 
 

 (20) 
 

4. Because the methods of speckle interferome-
try are complicated and nonlinear the actual process-
ing of the short-exposure images is performed, as a 
rule, digitally on a computer. The starting images are 
digitized, and their Fourier spectra are obtained with 
the help of the discrete Fourier transform algorithm. 
As a result the Fourier values are given at a finite 
number of points with some constant spacing  ` fa. 

5. For a fixed, small value of the frequency 

2 2( )af f f


 the MTC transforms into the MKT. In 
the usual formulation of the MTÑ, however, the 
frequency f2 runs through all possible values right 
up to the diffraction cutoff frequency fd = D/. 

To simplify the analysis we shall begin with the 
one-dimensional case. 
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ESTIMATION OF THE ACCURACY  
IN THE ONE-DIMENSIONAL CASE 

 
When the phase m is given at the discrete 

points fm = m the difference equations (13) and 
(14) assume the form 
 

 (21) 
 

 (22) 
 
The MKT algorithm for restoring the phase follows 
from Eq. (21) in the form of the sum 
 

 (23) 
 
In this case, the variance of the error for fp > fa sat-
isfies the following relations:9  
 

 
 

 (24) 
 

The linear increase in the error corresponds to its 
obvious accumulation in the summation process (23). 

In the MTC the system of equations (22) is 
overdetermined: the number of equations is greater 
than the number of unknowns. Because the errors in 
the measurements of  are independent (on different 
correlation intervals), as a rule, the system does not 
have an exact solution. In this case, the following 
recurrence scheme is employed to construct an ap-
proximate solution, as proposed by Weigelt.1,2 Be-
cause the choice of the linear term is arbitrary, the 
phase 1 is set equal to zero. Then the values of 2 
and 3 are found uniquely from Eq. (22) with 
m = l = 1 and m = 1, l = 2, respectively. The values 
of 4 and 5 are obtained by two methods: 1) 
(m = 1, l = 3) and (m = l = 2) and 2) (m = 1, 
l = 4), (m = 2, l = 3). Then the results are averaged. 
The values of 6 and 7 are found by averaging over 
the three corresponding variants of the estimates, etc. 
The mathematical experiment based on statistical 
modeling on a computer revealed an important draw-
back of this approach: the accuracies of the phases 
obtained at the middle frequencies (fa < f  10fa) is 
appreciably lower than at high frequencies 
(10fa < f < fd – 5fa), where a large number of inde-
pendent variants is averages. Figure 1 shows as an 
illustration an experimental plot of the error m of 
the Fourier spectrum of a point source with 
D/r0 = 128 and M = 30 short-exposure images. 

 
 

 
 

FIG. 1. Experimental plot of the error m in the Fourier spectrum of a point source obtained by 
Weigelt’s method with 30 images as a function of the normalized spatial frequency f/fd (fd is the 
diffraction frequency). 

 

The solution of the equation 
 

 (25) 
 

or the equivalent system of equations 
 

(26) 
 

where 
 

 (27) 
 

Ld = D/ is the number of the reading corre-
sponding to the diffraction cutoff frequency, is free 
of this drawback. We note that the equations (26) 
can be used as a basis for an iteration algorithm 
for searching for an optimal solution in the sense 
(25). This algorithm usually converges within 10 
iterations. The experiment shows that the average 
error of the estimate obtained right up to f  fd –
 5fa is virtually independent of the frequency and 
is appreciably smaller than the errors in Weigelt’s 
method (Fig. 2).  

It should be noted that the ultrahigh fre-
quency range f > fd – 5fa is not important, since 
here the OTF drops to zero. Physically the esti-
mate (26) is the average of different variants of the 
estimate obtained from all existing couplings. We 
shall estimate the magnitude of this error. 
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FIG. 2. Experimental plot of the error in estimating the phase m using the proposed iteration 
algorithm with 30 images as a function of the normalized spatial frequency f/fd (fd is the dif-
fraction frequency). 

 
 

Let us assume that the error m is much 
smaller than the errors m,1 made in measuring the 
phases of triple correlations (8). Then we obtain 
from Eq. (26) 
 

 (28) 
 
From here, using Eqs. (16)—(20) and the fact that 

the OTF 0( )H f


 does not change much on intervals 

of width fa (this is valid if D/r0 p 1), we obtain the 
following expression for the variance m for fm > fa: 
 

 (29) 
 

Now, since 
 

 (30) 
 

 (31) 
 
where for a one-dimensional aperture the effective 
number of regions of correlation n is estimated as 
2(D/r0), we obtain finally 
 

 (32) 
 
Thus the previous assumption that 

2 2( ) ( )m �   has been justified, and as a re-

sult we have found that in the one-dimensional case 
the MTC is much more accurate than the MKT. 
Moreover the following relation is satisfied: 
 

 (33) 
 
This relation reflects the fact that the accuracies of 
the estimates of the modulus and phase (in the 
MTC) are comparable in magnitude. Here it must be 

emphasized that the last property is of more general 
significance. Dividing the restoration problem into 
the subproblems of estimating the modulus and 
phase of the spectrum is an artificial mathematical 
device that makes it easier to construct a practical 
algorithm. When the processing is done correctly the 
accuracy of both estimates should be the same. In 
our case the subproblem of restoring the modulus has 
an obvious solution, and its accuracy q0 can serve as 
a criterion (in the sense of Eq. (33)) for optimality 
of a specific phase restoration algorithm. 
 

ESTIMATION OF THE ACCURACY IN THE 
TWO-DIMENSIONAL CASE 

 
The difference equations of the MKT are now 

 

 (34) 
 

The system (34) is overdetermined, and its con-
struction is optimal based on the least-squares crite-
rion: 
 

 
 

 (35) 
 
The solution is constructed based on equations of the 
form (10): 
 

 
 

 (36) 
 
This method of reconstruction can be interpreted 
essentially as a collection of two operations: a) de-
termination of a set of variants of estimates of the 
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phase m,1 by “joining" the measured phase differ-
ences  on different one-dimensional contours, con-
necting the frequencies studied fm,1 with the refer-
ence frequency f = 1, where 0,0 = 0, and b) averag-
ing these estimates. Since the variants of their er-
rors, in accordance with Eq. (24), are determined 
approximately as 2

0( ) / am n q f   and number of 

quasi-independent variants is equal to ((m + n) /fa)
2, 

the variance of the error in the resulting estimate 
should be equal to 2

0 .q  An exact mathematical analy-
sis of the accuracy of restoration from Eq. (34) based 
on Eq. (36) confirms this result.10,11 

As regards the MTÑ, the accuracy of this 
method remains the same: for each phase m,n the 
number of equations of the form (22) as well as the 
variance of the error in the corresponding measurement 
 increase by a factor of (D/r0). To obtain a more 
rigorous proof it is sufficient to perform calculations 
analogous to the above-presented equtions (25)–(32). 

Thus we arrive at the conclusion that in the 
two-dimensional case the MKT and MTC have the 
sane accuracies, satisfying the criterion (33). At the 
same time the MKT is much simpler to implement, 
since it does not require working with four-
dimensional arrays. Attempts to eliminate this draw-

back of the MTC by using triple correlations 1 2( , ),T f f
 

 
formulated independently only for the one-dimensional 
sections in the frequency plane,14 lead to sharply lower 
accuracy. This is explained by the fact that for each 
value of the phase the number of accessible equations 
of the form (22) decreases by a factor of (D/r0), while 
the accuracy of each of them remains the same. 

Nevertheless, in the MTC the invariance to 
displacements of the short-exposure images is at-
tractive. This is especially important when process-
ing so-called photocount images,13 whose distribu-
tions are collections of small numbers of separate 
photopulses. Since the integration errors can be 
significant for them, the accuracy of the MKT is 
appreciably lower. In this connection the hybrid 
algorithm, based on the use of triple correlations 
of the form (22), but with a fixed value 

of 2 2( ),af f f


 will apparently be more efficient. For 
it the phase restoration is similar to that described 
for the MKT. 

In conclusion we note that this analysis of the ac-
curacy was performed without any restrictions on the  

size of the object. At the same time, in processing 
short-exposure images of an object, when the angular 
size R is much less than the average atmospheric reso-
lution Ra = /r0 and the size of the region of charac-
teristic variation of the Fourier spectrum /R is much 
larger than the size fa of the region of correlation of 
the errors, the accuracy q0 and correspondingly 

1/22( )


  can be Ra/R times higher owing to the 

smoothing of the estimates. As a result, for astronomi-
cal objects at the limit of resolution of the telescope 
accuracy of the order of 0/M D r  can b achieved. 
This reflects  the fact that for such small objects a 
satisfactory estimate of the  image can be recon-
structed even from a single short-exposure image. 
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