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The thermal self-action of partially coherent beams in a moving medium is described 
based on the radiation transfer equation. The solution of this equation in the ray 
approximation permits reducing the problem of the self-action to the solution of a system 
of ordinary differential equations. Differences in the self-action of coherent and partially 
coherent beams are discussed. Calculations of the coherence radius over the beam cross 
section are presented. It is shown on the basis of this approach that in the geometric-optics 
approximation the coherence factor is invariant along any geometric ray. 

 
 

Researchers are becoming increasingly more 
interested in the application of the radiation transfer 
equation (RTE) for describing the self-action of partially 
coherent radiation.1,2 The solution of the RTE by means 
of the ray approximation in the case of stationary 
thermal defocusing was reported in Ref. 1. In this paper 
the RTE is solved for a nonlinear medium with wind 
refraction when the problem is not axially symmetric. 

The use of the RTE or the equivalent closed 
equation for the second-order coherence function for 
describing the self-action of partially coherent beams 
is predicated on the possibility of separating the 
correlation functions of the field and the dielectric 
constant of the medium, which is a functional of the 
radiation intensity. This separation can be strictly 
performed only for Gaussian random fields. We shall 
use the approach of Ref. 3 to determine the 
restrictions on the characteristics of the radiation and 
the medium under which the nonlinear interaction of' 
the radiation with the medium does not affect the 
starting Gaussian statistics of the field. We shall 
assume that the nonlinear Interaction of the field with 
induced fluctuations of the dielectric constant of the 
medium occurs over a characteristic distance that is 
much larger than the region of longitudinal correlation 
of the field. In this case the additional correlation 
between the random radiation field and the dielectric 
constant field will be small and the starting Gaussian 
statistics will be conserved if 
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is the critical power above which the self-action of a 
partially coherent beam occurs; v is the wind velocity; 
n0, , Cp, and  are the refractive index, density, 
isobaric heat capacity, and the absorption coefficient 
of the medium, respectively; a0 and rc0 are the width 
and coherence radius of the beam; k = 2/ is the 
wave number; 0 is the coherence time of the radiation; 
t0 is the duration of the radiation pulse; and, 
v = a0/v is the time of flight of a particle of the 
medium across the transverse cross section of the beam. 

Thus as the coherence time decreases the region of 
applicability of the RTE increases significantly. In 
particular, the beam power can significantly exceed 
the critical power and the propagation distance can be 
much greater than the nonlinear refraction length 
 

 
 

The solution of the RTE 
 

 (2) 
 

for the intensity 
 

 
 

 (3) 
 

is constructed along the characteristic r(z), which 
satisfies the equation 
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 (4) 
 
with the initial conditions given in the emission plane 

0( 0) ,z  r r  ( 0) / .d z dz  r  
To find the solution of the RTE in the ray 

approximation1 the system of equations (2)–(4) is 
supplemented by an equation for the variation 
 

 
 

 (5) 
 
with the initial conditions given in the reception plane 

( ) 0;z z  R  x y( ) / ( , ).d z z dz      R  

Replacing the second-order vector differential 
equation (5) by a system of four first-order scalar 
equations the solution of (5) can be represented in the 
form 
 

 (6) 
 
where 
 

 
 
and u(z) is the Green matrix of Eq. (5) in the 
reception plane ( ) .u z z I   For partially coherent 
beams with the initial brightness distribution4 

 

 (7) 
 
The integrand in (3) may be written in the form 
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where the quadratic form S(x0, ó0, x, y) is 
defined, using (5), as follows: 
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where uij are elements of the matrix u(z) (i, j = 1  4). 
The integral in (3) with the integrand (8) can be easily 
integrated and the expression for the intensity in the 
ray approximation assumes the form 
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The intensity at the point of reception of the 
radiation in (10) is determined in terms of the elements 
of the Green matrix of Eq. (5) V(z) with boundary 
conditions given in the emission plane: V(z = 0) = I. 

Under conditions when the nonlinear distortions 
are strong (Er  ) expression (10) for the intensity 
assumes a simple form 
 

 (11) 
 

It is not difficult to show5 that in this case the solution 
of the RTF transforms into the geometric optics 
solution of a parabolic equation. 

Thus the solution of the problem of the the 
self-action of partially coherent beams in the ray 
approximation reduces to the simultaneous solution of 
Eq. (4) for the characteristic ( )zr  and Eq. (5) for the 
elements of the matrix V(z). These equations are 
closed by a material equation in order to determine the 
perturbation of the dielectric constant of the medium 
( , ).z R  The results of investigations of the self-action 

of the quasicontinuous partially coherent radiation in 
a medium with the nonlinear wind refraction are 
presented below. 

For a homogeneous medium with constant wind 
velocity directed perpendicular to the direction of 
propagation of the beam , the solution of the problem  
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of the self-action will be determined by the nonlinear 
refraction length LR refraction parameter Er. 

The aberrational distortions of the beam subjected 
to thermal self-action in a moving medium are 
illustrated in Fig. 1. The results of the calculations of 
the profiles of the intensity of the starting Gaussian 
beam for different values of the nonlinear refraction 
parameter are presented in Fig. 2. As the value of the 
nonlinear refraction parameter is increased the profiles 
of the beam intensity converge to a limit determined 
by geometric optics. The maximum difference, the 
reasons for which will be discussed below, is observed in 
the region of local aberrational focusing of the beam. 
 

 
 a b 
 
FIG. 1. The aberrational structure of a Gaussian 
beam obtained in the geometric optics 
approximation (a) and isoplets for the intensity of 
the same beam (b). 

 

 
 
FIG. 2. The change in the profiles of the intensity 
of a Gaussian beam as a function of distance for 
the nonlinear refraction parameter Er = 1 (dotted 
curves), Er = 4 (dashed curves), Er = 10 
(dot-dashed curves), and in the geometric – 
optics approximation. 

 
It follows from the relation between the 

brightness of the radiation and the coherence function 

of the field that the solution of the RTF should 
describe the change in the statistical properties of the 
field. The most important characteristic of statistically 
inhomogeneous radiation is the spatial coherence 
radius defined as the characteristic scale along the 
difference coordinate over which the spatial coherence 
function changes. Since we are discussing partially 
coherent beams with a starting brightness distribution 
of the form (7) the normalized value of the coherence 
radius will be inversely proportional to the effective 
angular width of the brightness body in (8) and (9). 

In the ray approximation the cross section of the 
brightness body is an ellipse, whose dimensions and 
orientation Eire determined by the coefficients of the 
quadratic terms. As a result the scales of the coherence 
function along the difference coordinate, which 
determine the coherence radius, will also be different. 
The anisotropy of the statistical properties of the 
coherence function along the difference coordinate 
will be described by the coherence ellipse (by analogy 
to the polarization ellipse) defined as follows: 
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FIG. 3. Transformations of the coherence ellipse 
over the Gaussian beam cross-section calculated in 
the geometric — optics approximation at the 
distances z = 1 (a) and z = 1.5 (b). The 
cross-hatched part of the figure shows the 
undisturbed normalized coherence ellipse in the 
starting plane. 

 

Transforming to a coordinate system tied to the 
princpal axes of the coherence ellipse we obtain the 
following expressions for the coherence radii 
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The results of calculations of the coherence radii 
represented in Fig. 3 clearly demonstrate that the 
anisotropy of the coherent properties of the radiation is 
significant. For this reason investigations of the 
behavior of the coherence radius which on the beam 
axes only 6–7 or in one direction are by no means 
complete. The coefficients (12)which determine the 
coherence effective ellipse give more complete 
information about the change in the coherence radii. 

The ratio of the coherence area to the beam area 
2 2

1 c / ,C r a  or the product of the coherence area 

Sc = zcx  rcy and the intensity on the beam axis6,8 
C2 = ScW can be used as a quantitative measure of the 
coherence of the radiation. It is easy to see that both 
definitions of the coherence factor are identical. The 
change in the coherence area ( , ( ))cS z r  along a 

geometric ray ( )zr  is given by expression 
 

 
 

In the geometric-optics approximation (Er  ) 

 = 1. From here, using expression (11) for the 
radiation intensity, it follows that in the 
geometric-optics approximation the coherence factor is 
invariant along any geometric ray ( )zr  
 

 
 

Taking diffraction into account increases the 
coherence factor along the geometric-optics rays over 
the entire cross section of the beam with the exception 
of the region near the axis. In Refs. 6–8 it was shown 
that the coherence factor on the beam axis can decrease 
as well as increase. The change in the coherence factor 
in these cases is obviously associated with the fact that 
the self-action of the fluctuations of the field through 
the induced fluctuations of the medium is taken into 
account. Our calculations are based on the RTE, 
whose application in self-action problems is predicated 
on the assumption that the induced fluctuations of the 
dielectric constant of the medium do not significantly 
affect the statistical properties of the radiation. 

It is of interest to investigate the differences 
between the self-action of coherent and partially 
coherent beams. The nonlinear refraction length of 
such beams does not depend on the degree of coherence 
and will be identical for beams with equal power and 
size. The nonlinear refraction parameters of coherent 
and incoherent beams will be equal, if their diffraction 
lengths are equal, which is possible only for beams 

with different wavelengths. The diffraction 
divergences of such beams are equal, and in this sense, 
one can say that the comparison of the self-action of 
coherent and Incoherent beams presented in Fig. 4 
refers to beams with the same diffraction divergence. 
 

 
 
FIG. 4. Comparison of the calculations of the 
self-action of partially coherent radiation (solid 
curves) and coherent radiation: the results of 
Ref. 10 (Er = 123) and Ref. 11 (Er = 246, 
dot-dashed curves.). 

 

It is obvious from the figure that if the intensity 
profiles are sufficiently smooth, the solution for a 
coherent beam will be close to that for a partially 
coherent beam. As the aberrational distortions, which 
increase the inhomogeneity of the beam in the region of 
maximum intensity, grow the contribution of 
diffraction to the formation of the intensity profile 
will increasingly determine the degree of coherence of 
the radiation. In addition diffraction is manifested 
more strongly for coherent radiation than for partially 
coherent radiation. To explain this difference we shall 
write down an expression for the effective size of a 
partially coherent beam 
 

 
 

 
 

and a coherent beam, derived in Ref. 9, 
 

 
 

Here A and  are the amplitude and phase of the wave. 
These expressions are distinguished by the first 

terms in the integrands. In the case of coherent 
radiation the broadening of the beam is determined by  
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the gradient of the intensity while the broadening of the 
incoherent beam is determined by the change in the 
coherent properties. Analysis of Figs. 2 and 3 shows that 
at distances of the order of 1 or 2 of refraction lengths 
the normalized coherence radius changes by a factor of 
1.5–2. At the same time the gradients of the intensity 
can increase by an order of magnitude. The smoother 
change in the coherence function along the difference 
coordinate explains the fact that as the nonlinear 
refraction parameter Er increases the intensity at the 
aberrational maximum grows more rapidly for partially 
coherent radiation, since diffraction slows the growth of 
the intensity less in this case than for coherent radiation. 
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