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An analysis of a shear interferometer based on double-exposure recording of hologram of the 
image of a mat screen when the image is focused with a Kepler telescope is presented. It is shown 
both theoretically and experimentally that spatial filtration in the hologram plane enables one to 
control the field of the telescope. The spatial filtering in the Fourier plane makes it possible to 
record the interference pattern characterizing the phase distortions introduced in the wave 
illuminating the mat screen by the aberrations of the illuminating optical system. 

 
In both classical and holographic shear interferometries 

based on recording the wavefronts we usually assume that 
all the optical parts of the interferometer are ideal and the 
errors due to them can be neglected in comparison with the 
errors due to the controllable objects. However, any actual 
interferogram is differential topography of the controllable 
object and incorporates the errors due to the interferometer 
itself. Because of this fact, the quality of the optical parts 
must meet stringent requirements and the interferograms 
themselves must be specially interpreted. For example, 
Refs. 1, 2, and 3 describe the technique for differential 
interferometry based on doubly exposured holograms of the 
focused image of a mat screen produced by a diffusely 
scattered radiation field. The diffusely scattered radiation 
fields make it possible to localize the interference patterns 
characterizing the controllable object and the optical parts 
used to form the reference beam and the illuminating 
wavefront in different planes. Therefore, the spatial filtration  
 

enables one to record the shear interferogram characterizing 
solely the controllable object thereby resulting in the lenient 
requirements to the quality of the optical parts of the 
interferometer.  

The well–known Kepler telescope is capable of forming 
the real image of the object. In the present paper we consider 
the formation of the shear interferograms based on doubly 
exposured holograms of the focused image of the mat screen 
produced by a diffusely scattered radiation field when the 
image is focused with the Kepler telescope.  

As shown in Fig. 1 the image of the mat screen 1 is 
constructed in the plane of the photographic plate 2 with the 
telescope consisting of the positive lenses L

1
 and L

2
. The 

hologram is produced during the first exposure by a 
quasiplanar reference wave 3. Prior to the second exposure the 
incidence angle of the quasiplanar illuminating wave is 
changed by α in the (x, z) plane while the incidence angle of 
the reference wave in the same plane is changed from θ

1
 to θ

2
.  

 

 
 

 FIG.  1.                                                              FIG.  2.  
 
FIG.  1. Optical diagram of recording and reconstructing of the double exposure hologram of an image focused with the 
telescope: 1) mat screen; 2) photographic plate; 3) reference beam; 4) interferogram plane; L

1
 , L

2
 , and L

3
 are lenses; p

1
 

and p
2
 are aperture diaphragms and p

3
 is a filtering diaphragm.  

 
FIG.  2. Optical diagram of recording of the interference pattern localized in the hologram plane with spatial filtration in 
the Fourier plane.  
 

Assuming that the diameter of the light beam 
incident on the mat screen exceeds the aperture diameter 
of the lens L

1
, we shall represent the complex amplitudes 

of the fields from the first and second  

exposures in the (x
4
, y

4
) plane of the photographic plate 

in the Fresnel approximation, neglecting the  
amplitude and phase factors, which are constant in the 
plane: 
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Here k is the wave number; t(x
1
,y

1
) is the comlex 

transmission amplitude of the mat screen and is a random 
function of the coordinates; ϕ

1
(x

1
, y

1
) is a deterministic 

phase function which characterizes the phase distortions 
of the illuminating wavefront due to aberrations in the 
illuminating optical system; p

1
(x

2
, y

2
)expiϕ

2
(x

2
, y

2
) is 

the generalized pupil function of the objective lens of the 
Kepler telescope (the lens L

1
 with the focal length f

1
 is 

shown in Fig. 1) and characterizes the axial wave 

aberrations due to the objective lens;  
p

2
(x

3
, y

3
) exp iϕ

3
(x

3
, y

3
) is the generalized pupil function 

of the eyepiece (the lens L
2
 with the focal length f

2
 is 

shown in Fig. 1); a is the illuminating wavefront shear 
resulting from the change in the wavefront tilt prior to 
the second exposure.  

On the basis of expressions (1) and (2), the light 
fields in the back focal plane of the eyepiece may be 
represented by a convolution  
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where ⊗ denotes the convolution operation, μ
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scale factor of image transformation, 
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are the Fourier transforms of the generalized pupil 
functions of the objective lens and eyepiece, respectively.  

As shown in Ref. 5, the width of the function P
1
(x

4
, y

4
) 

is of the order of 
λf

2

d
1
, where k is the wavelength of the 

coherent light source used to record and reconstruct the 
hologram, d

1
 is the diameter of the pupil of the objective lens. 

If the phase change of the spherical wave with radius of 

curvature 
f
1
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2
1

 does not exceed π within the domain of existence 

of the function P
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Since the width of the function P
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Since both the objective lens and the eyepiece have 
finite dimensions and collect only a part of the spatial 
information which is carried by the light wave, it follows 
that each point of the object is broadened in the image 
plane to the speckle size which, in turn, is determined by 
the width of the function P
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Let the double–exposure hologram recorded in this 
way be reproduced by a copy of the reference wave, e.g. , 
from the first exposure. The diffraction field in the 
hologram plane is then given by  

 

u (x
4
, y

4
) ∼ t(– μ

1 
x

4
 – μ

1 
y

4
) exp i ϕ

1
(– μ

1 
x

4
, – μ

1 
y

4
) ⊗  

 

⊗ P
1
(x

4
, y

4
) ⊗ P

2
(x

4
, y

4
) + exp i [kx

4
(sinθ

1 
–

 
sinθ

2
) + 

 

ϕ
4
(x

4
, y

4
) – ϕ

4
(x

4
 – b, y

4
)]{t(– μ

1 
x

4
, – μ

1 
y

4
) × 

 

exp i [– kμ
1 
x

4
sinα + ϕ

1
(–μ

1 
x

4
 + a, – μ

1 
y

4
)] ⊗  

⊗ P
1
(x

4
, y

4
) ⊗ P

2
(x

4
, y

4
)} , (9) 

where ϕ
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) is the deterministic phase function 

characterizing the phase distortions introduced in the 
reference wavefront by the aberrations of the illuminating 
optical system, b is the reference wavefront shear caused by 
the change in the wavefront tilt prior to the second 
exposure.  
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which can be proved by representing the convolution in 
the integral form and by substituting the corresponding 
values of the Fourier transforms, we can write 
expression (9) in the form  
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From expression (10) it follows that in the hologram 
plane two identical speckle–fields from both exposures 
coincide with the speckle size determined by the width of 
the function P
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field from the second exposure is tilted at the angle μ
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with respect to the optical axis. Hence it follows that the 
interference pattern, which characterizes the phase 
distortions of the illuminating wavefront and of the 
reference wavefront,1 is localized in the hologram plane. Let 
the opaque screen p
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 with a circular aperture centered on 

the optical axis (Fig. 1) be positioned in the hologram 
plane. If the condition  
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is satisfied within the diameter of the aperture, i.e., if the 
diameter of the filtering aperture does not exceed the 
interference bandwidth of the interference pattern localized 
in the hologram plane, then the diffraction field at the exit 
from the filtering aperture is given by the expression  
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where p
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) is the transmission function of the opaque 

screen with a circular aperture.6 
The light field in the recording plane 4 in Fig. 1 can 

be represented in the form of a Fourier integral of the field 
in the plane of spatial filtration. Then we obtain the 
following distribution of the correlating speckle–fields at 
the back focal plane of lens L
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 with focal length f
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are the Fourier transforms of the corresponding functions. 
From expression (12) it follows that in the Fourier 
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5
) plane by an order of 

magnitude,7 this function can be taken outside the convolution 
integral in expression (12). The superposition of the 
correlating speckle–fields then results in the irradiance 
distribution of the form  
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which describes the speckle–structure modulated by the 
interference fringes. The interference pattern has the form of 
shear interferogram in the fringes of infinite width, which 
characterizes the axial wave aberrations due to the Kepler 
telescope.  

According to expression (11), the information on the 
phase distortions introduced in the wavefront of the light 
wave by the aberrations of the objective lens and the 
eyepiece is embeded within the individual speckle in the 
hologram plane. Now the distribution of the field within 
each individual speckle is determined by the convolution 
P

1
 (x

4
, y

4
) ⊗ P

2
(x

4
, y

4
) within the small element of the 

image of the mat screen on the optical axis and is formed 
as a results of diffraction of the wave with zero spatial 
frequency of the hologram of the mat screen by the pupils 
of the objective lens and the eyepiece of this telescope. 
The interference pattern characterizing the axial wave 
aberrations of the telescope is recorded with the spatial 
filtration following the above–described optical scheme. 
As to the small element of the image of the mat screen 
centered at the off–axis point with coordinates (x

40
, 0), 

the amplitude–phase distribution of the field within an 
individual speckle in this region is the result of 

diffraction of the wave with the spatial frequency 
x

40 
μ

1
 λf

2
 

by the mat screen. Hence it follows that the off–axis 
spatial filtration results in forming the interference 
pattern which in a combined way characterizes the on–
axis and off–axis wave aberrations due to the Kepler 
telescope.  

To record the interference pattern localized in the 
hologram plane, we consider the spatial filtration of the 
light field reconstructed from a double–exposed hologram 
in the Fourier plane (Fig. 2).  

If we assume that the diameter of the lens L
3
 

positioned in the hologram plane is greater than the size 
of the image of the mat screen, we may write the 
expression for the diffraction field in the back focal plane 
of the lens L

3
 on the basis of expression (10):  
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are the Fourier transforms of the corresponding functions.  
 



364   Atmos. Oceanic Opt.  /May  1991/  Vol. 4,  No. 5 V.G. Gusev 
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is satisfied within the diameter of the aperture diaphragm p
3
 

of the lens L
4
 (Fig. 2) centered on the optical axis, i.e., if 

the diameter of the filtering aperture does not exceed the 
width of the interference pattern localized in the Fourier 
plane, then the diffraction field at the exit from the 
aperture is given by the expression: 
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The diffraction field in the back focal plane of the lens L

4
 

(Fig. 2) with the focal length f
4
 can be represented as a 

Fourier integral of the field in the plane of spatial filtration 
multiplied by the phase distribution of the spherical wave. 
The distribution of the correlating speckle fields in the 
recording plane 4 (Fig. 2) then is given the form: 
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 is the Fourier transform of the corresponding function.  

As follows from expression (16), the identical speckles in 
the (x
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) plane coincide within the region of overlap of the 

images of the mat screen. If the period of oscillations of the 
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convolution integral in expression (16). In this case the 
irradiance distribution is formed by the superposition of the 
correlating speckle-fields  
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which describes the speckle structure modulated by the 
interference fringes. The interference pattern then has the 
form of a shear interferogram in fringes of infinite width  

which characterizes the phase distortions introduced in the 
reference and illuminating wavefronts by the aberrations of 
the illuminating optical systems.  

In our experiment we recorded the double-exposure 
holograms of the image of the mat screen when the image 
is focused with the Kepler telescope on Micrat–VRL 
photographic plates using a He—Ne laser with 
wavelength λ = 0.63 μm. A VU — 200 autocollimator 
served as a controlled telescope. The image of the screen 
in the plane of the photographic plate was constructed 
with this telescope at 21X magnification. Prior to the 
second exposure, the angle a of the wavefront tilt of the 
wave incident on the mat screen was equal to 57′47′′ 
while Δθ = 2′45′′ to an accuracy of ± 3′′. The double-
exposure hologram was reproduced by a small–aperture 
laser beam of ≈ 2 mm in diameter, and the interference 
pattern was recorded in the focal plane of the objective 
lens of 8 cm in focal length. Figure 3a shows an 
interferogram filtered with the help of reconstruction of 
the hologram at the on–axis point. This interference 
pattern characterizes a spherical aberration with post–
focal defocusing at the pupil of the telescope 5 mm in 
diameter. The interference pattern filtered with the help 
of reconstruction of the hologram at a point with 
coordinates x

40
 = 8 mm and y

40
 = 0 is shown in Fig. 3b.  

According to Ref. 8 taking into account the defocusing 
T, the relation for the third–order aberrations as functions 
of coordinates (x, y) of the exit pupil of the telescope takes 
the form  
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where A, B, C, D, and E are the coefficients 
characterizing the spherical aberration, the coma, the 
curvature of the field, the astigmatism, and the 
distortion, respectively. In Fig. 3a the interferogram can 
be interpreted using the method proposed in Ref. 9, 
which is based on the assumption that the functions 
determining both the unknown wavefront and the fringes 
in the shear interference pattern are "smooth" and may be 
described by polynomials whose coefficients are uniquely 
related to each other. This yields A = 24 and T = 12.1 in 
units of the wavelength. Using these data, the 
interferogram from Fig. 3b was interpreted, and the 
coefficients characterizing the deformation in a plane 
wave propagating at an angle β = 2°18′ with respect to 
the optical axis, when the deformation was produced by 
the off–axis aberrations, were determined as follows: 
B = 7.1 and (C + D) = 4.3.  
 

 
 
FIG. 3. Shear interferograms localized in the Fourier 
plane and recorded when performing the spatial filtration 
on-axis (a) and off–axis (b).  
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FIG. 4. Shear interferogram localized in the hologram 
plane.  

 
Figure 4 shows the interference pattern localized in the 

hologram plane. To record it in accordance with Fig. 2 the 
lens 25 cm in focal length and the objective lens 8 cm in 
focal length were used. The spatial filtration was performed 
in the Fourier plane on the optical axis. The diameter of a 
filtering aperture was about 1.5 mm. Since the Kepler 
telescope has no the vignetting effect,10 and the speckles in 
the hologram plane are oriented along the optical axis,11 the 
interference picture localized in the hologram plane can be 
recorded in this way when the hologram is reconstructed in 
the plus-first order of diffraction. In addition, in both cases 
the telescope can be used, which forms an image in the 
hologram plane, with spatial filtration in the Fourier plane.  

To summarize the results of our theoretical analysis 
and the experimental data, it should be noted that the 
considered technique of differential interferometry with the 
help of the diffusely scattered fields based on double–
exposure records of the holograms of the image of the mat 
screen, when the image is focused with a Kepler telescope,  
 

results in the shear interference pattern localized in the 
hologram plane and in the far–diffraction zone. Spatial 
filtering in the hologram plane makes it possible to record 
the shear interferograms independently within the region of 
overlap of the images of the exit pupil of the telescope. This 
shear interferogram characterizes the wave aberrations due 
to the telescope. Phase distortions of the illuminating and 
reference wavefronts due to aberrations in the illuminating 
optical systems do not result in any change of the filtered 
interference patterns.  
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