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An adaptive optical system for aperture sounding is synthesized. The problem of 
synthesis of such a system is reduced to that of optimal nonlinear filtering and is 
solved based on the method of invariant embedding. The resulting relations are 
derived for the operation algorithm of the adaptive optical system. 

 
At present the development of efficient operation 

algorithms of the adaptive optical systems (AOS's) is an 
important scientific and technical problem. It was shown in 
Refs. 1 and 2 that such algorithms for phase–conjugated 
AOS's may be synthesized employing the theory of optimal 
linear filtering. In addition, the adaptive algorithm 
synthesized in Ref. 2 permits one to compensate partly for 
the effect of the a priori uncertainty in the statistical 
characteristics of the phase fluctuations on the operating 
efficiency of a phase–conjugated AOS.  

The present paper analyzes the operation algorithm of an 
aperture–sounding AOS. In contrast to phase–conjugated 
AOS's, the aperture–sounding AOS's are known to operate on 
the basis of optimizing against certain complex quality 
functionals, which depend on the design of the AOS, the given 
physical requirements, and technical capabilities of the 
system.3 In addition, the method of aperture sounding is based 
on the direct measurements of the parameter being optimized, 
while the needed phase corrections (the controllable values) 
α(kT), usually nonlinearly related to the measured quantities, 
are found only indirectly. Thus the method may be extensively 
used in adaptive focusing systems, in image forming systems, 
and those forming beams of prescribed shapes. They all differ 
in their quality functionals being optimized. However, their 
common feature is that the vector α(kT) of the parameters 
being monitored in the process of operation of the aperture–
sounding AOS (here and below we consider the system 
operating in discrete time) is nonlinearly related to the valid 
signal u

s
[α(kT), kT]. When the input field of the system 

u
inp

(α, kT) is formed, noise is additively superimposed on the 

valid signal, so that 
 

u
inp

(a, kT) = u
s
[a(kT), kT] + n(kT) , (1) 

 

where T is the sampling period, n(kT) is the discrete white 
noise with zero mean and correlation matrix 

M{n(iT)nT(jT)} = Rδij, R is the symmetric nonnegative 

matrix, and M{.} is the operator of mathematical 
expectation.  

As a figure of merit of operation of the aperture–
sounding AOS, we can choose the functional J, which 
estimates the degree of "similarity" of the detected field 
u

inp
(α, kT + T) and the (prescribed) field under study, 

 

u
pr

(α, kT + T) = u
s
 [α
∧
(kT + T/kT), kT + T] , 

 

and has the form  
 

J = 
1
2 ∑

k=0

l–1

 {u
inp

(α,kT + T) – u
s
[α
∧
(kT + T/kT), kT + T]}TR–1

 ×  

× {u
inp

(α, kT + T) – u
s
[α
∧
(kT + T/kT), kT + T]} , (2) 

 

where α
∧
(kT + T/kT) is the extrapolated estimate of the 

parameter of the information–bearing signal (its wavefront 
tilt).  

In that case, the problem of synthesis of an aperture–
sounding AOS as a nonlinear system can be generally 
formulated in the following way: for the prescribed 
parameters of the valid signal u

s
[α(kT), kT] and noise n(kT) 

we must determine such physically possible transformations 
of the input field of the system u

inp
(α, kT) recorded starting 

from time k
0
T, which would yield an estimate α

∧
(kT) of the 

valid signal parameter which minimizes the value of figure 
of merit (2) at each moment k ≥ k

0
. It is also assumed that 

the parameter being estimated can be described by the 
equation of the form  

 

α(kT + T) = F[α(kT), kT] + Γ[α(kT), kT]ξ(kT) , (3) 
 

where F[α(kT), kT] and Γ[α(kT), kT] are the nonlinear 
functions; ξ(kT) is the discrete white noise with zero mean 

and covariation matrix M{ξ(iT)ξT(jT)} = Qδij, Q is the 

symmetric nonnegative matrix, and M{n(iT)ξT(jT)} = 0. 
The formulated problem belongs to the class of the 

problems of optimal nonlinear filtering. We consider its 
solution based on the method of invariant embedding.4 That 
method is used for solving the two–point boundary problem of 
determining either the difference equation or the coefficients of 
that equation which describes the physical phenomena in our 
AOS on the basis of some prescribed criterion (functional (2) 
in our case). This method is conceptually simple and highly 
flexible, which was confirmed in Ref. 2, in which an adaptive 
algorithm for filtering the signals in a phase–conjugation AOS 
is synthesized with the help of that technique. 

Let us find the estimate α
∧
 (kT), which minimizes the 

functional (2). For this purpose let us consider the 
Hamiltonian4  

 

Z[α(kT), λ(kT + T)] = 
1
2 {uinp

(α, kT + T) –  

 

– u
s
[α
∧
(kT + T/kT), kT + T]}TR–1{u

inp
(α, kT + T) –  

 

– u
s
[α
∧
(kT + T/kT), kT + T]} + λT(kT + T)α(kT) , 

 
where λ(kT + T) are undetermined factors. In our case the 
canonical equations for λ(kT + T) and α(kT) have the form  
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α(kT + T) = 
∂Z[α(kT), λ(kT + T)]

∂λ(kT + T)
 , 

 

λ(kT) = 
∂Z[α(kT), λ(kT + T)]

∂α(kT)
  

 

with the boundary conditions at the ends of the interval 
[0, eT]  

 

α(0) = α
0
,  λ(eT) = 0 .  

 

Thus, the problem of minimizing functional (2) is 
reduced to the two–point boundary problem. Its solution by 
the method of invariant embedding4 gives the following 
recursion equations, optimal within the quasioptical 
approximation, which describe the operation of the aperture–
sounding AOS:  

 

α
∧
(kT + T) = α

∧
(kT + T/kT) + K(kT + T) ×  

 

× 
∂u

s
T[α

∧
(kT + T/kT), kT + T]

∂α
∧
(kT + T/kT)

 R–1{u
inp

(α, kT + T) –  

 

– u
s
[α
∧
(kT + T/kT), kT + T]} , (4) 

 

α
∧
(kT + T/kT) = F [α

∧
(kT), kT] , (5) 

 

and  
 

K–1(kT + T) = 
⎩
⎨
⎧∂F[α∧(kT), kT]

∂α
∧
(kT)

 K(kT) 
∂FT[α

∧
(kT), kT]

∂α
∧
(kT)

 

+

 

  

 

}
 

+

 

Γ[α
∧
(kT), kT] QΓ

T[α
∧
(kT), kT]

–1

 +  

 

+ 

∂u
s
T[α

∧
(kT + T/kT), kT + T]

∂α
∧
(kT + T/kT)

 R–1
 

∂u
s
[α
∧
(kT + T/kT), kT + T]

∂α
∧
(kT + T/kT)

 –  

 

– {u
inp

(α, kT + T) – u
s
[α
∧
(kT + T/kT), kT + T]} ×  

 

× R–1 
∂

∂α
∧
(kT + T/kT)

 
∂u

s
T[α

∧
(kT + T/kT), kT + T]

∂α
∧
(kT + T/kT)

 , (6) 

 
with the initial conditions (k = 0)  

 

α
∧
(0) = m

α
;  K(0) = d

α
, (7) 

 
where m

α
 and d

α
 are the mathematical expectation and the 

variance of the parameter of valid signal. 
 

 
 

FIG. 1. Block diagram of the aperture–sounding AOS. 
 
In accordance with Eqs. (4)–(6), the block diagram of 

the aperture–sounding AOS can be represented in the form 
shown in Fig. 1. The block diagram includes two units. The 
input field u

inp
(α, kT + T) is fed to both inputs. The current 

estimate α
∧
(kT + T) is formed at the output from the first 

described by Eq. (4) and designated as an estimation unit. 
According to Eq. (4), the estimation unit includes an 
optimal discriminator (OD) a smoothing optimal filter (OF) 
and a synthesizer. They are the nonlinear elements. The 
output signal from the discriminator  

ε(kT + T) = 
∂u

s
T[α

∧
(kT + T/kT), kT + T]

∂α
∧
(kT + T/kT)

 ×  

 

× R–1 {u
inp

(α, kT + T) – u
s
[α
∧
(kT + T/kT), kT + T]} 

 

characterizes the difference between the field at the input of 
the system and the field under study. The structure of the 
smoothing optimal filter is described by Eqs. (4) and (5). 
The synthesizer appears to be the major part of the  
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aperture–sounding system, with the help of which the 

emitted field u
s
[α
∧
(kT + T/kT), kT + T] is controlled and 

the feedback loop of the AOS is closed on the basis of 

estimates α
∧
(kT)  

The amplification of the signal from the estimation unit 
with the gain K(kT + T) which characterizes the accuracy of 
the estimation is realized by the second amplifying unit. The 
structure of this unit is described by Eq. (6) and is not 
shown to simplify the figure. 

In practice one may always identify such an interval of 
variation of the evaluated parameter (kT), for nonlinear and 
discrete process (3) may be linearized. Equation (3) then 
takes the form 

 

α(kT + T) = Fα(kT) + Γξ(kT) , (8) 
 

where F and Γ are the matrices, accounting for the 
statistical properties of the processes α(kT) and ξ(kT). 

In this case, the recursion equations (5) and (6) 
describing the operation of the aperture–sounding AOS, 
take the form 

 

α
∧
(kT + T/kT) = Fα

∧
(kT) (9) 

 

and  
 

K–1(kT + T) = {FK(kT)FT + ΓQΓ
T}–1 +  

 

+ 

∂u
s
T[α

∧
(kT + T/kT), kT + T]

∂α
∧
(kT + T/kT)

 R–1 
∂u

s
[α
∧
(kT + T/kT), kT + T]

∂α
∧
(kT + T/kT)

 –  

 

– {u
inp

(α, kT + T) – u
s
[α
∧
(kT + T/kT), kT + T]} ×  

 

× R–1 
∂

∂α
∧
(kT + T/kT)

 
∂u

s
T[α

∧
(kT + T/kT), kT + T]

∂α
∧
(kT + T/kT)

 . (10) 

 

Then in accordance with Eqs. (4), (9), and (10), the 
block diagram of the aperture–sounding AOS (see Fig. 1) is 
simplified as follows: the smoothing optimal filter in the 
estimation unit becomes linear (and, generally speaking, 
nonstationary) while the nonlinear transformations are 
performed by the optimal discriminator only. 

The advantage of the described method consists in the 
fact that the optimal discriminator and the optimal filter are 
synthesized separately. In addition, the optimal discriminator 
remains unchanged when the spectral characteristics α(kT) 
change, so that only a new smoothing optimal filter is sought. 

The approach permits one to employ the apparatus of the 
theory of the optimal nonlinear filtering to design AOS's for 
various applications which use the method of aperture 
sounding. 
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