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We consider the problem of determining the parameters of the near–
ground atmospheric layer from the data of gradient observations of wind 
velocity and air temperature.  A numerical method of analysis of the 
measurement data and the experimental design is proposed.  Numerical 
simulation of the optimum levels for location of the gradient observations is 
performed for thermally–stratified near–ground layer. 

 
The uncertainty connected with measurement 

errors in the mean values of meteorological elements 
arise when determining the characteristics of 
turbulent regime in the near–ground atmospheric 
layer such as the friction rate u

∗
, vertical turbulent 

fluxes of heat w′T′ , and moisture w′q′ , by indirect 

methods, for instance, by data of gradient 
observations.  Approximating the measured profiles 
of wind velocity and temperature by models 
corresponding to physical observation conditions one 
can formulate different criteria for estimating 
accuracy of the parameters of the near–ground layer 
using the least squares method (LMS).  The 
parameters are: u

∗
, temperature scale T

∗
, and the 

Monin–Obukhov length scale L.  Since one measures 
different physical values, the problem of multi–
criterion estimation of the parameters arises.  In this 
case, the technique of calculations can use only the 
measurements of wind velocity for determining u

∗
, 

and only gradient temperature measurements for 
T∗.

1, 2 In this paper we present a unified criterion 
which takes into account the variances of errors in 
measuring the wind velocity and temperature as 
weight factors for the estimation of u

∗
, T

∗
, and L.3 

To reduce the influence of random measurement 
errors on the quality of the estimated parameters, we 
consider the problem of the choice of optimum 
location of the gradient observations.  The problem 
of the construction of the experimental plan is 
formulated in correspondence with Ref. 4. for the 
case of simultaneous measurements of several values 
at the same levels. 

 

1. FORMULATION OF THE PROBLEM OF 

ESTIMATING PARAMETERS IN THE  

NEAR–GROUND LAYER 
 

Let us consider a stationary, horizontally 
homogeneous stratified near–ground layer of the 
atmosphere.  Then, according to the similarity 

theory, the profiles of the mean values of wind 
velocity, potential temperature, specific humidity can 
be represented in the following form5–7: 
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Here u is the horizontal component of wind velocity; T 
is the potential temperature; q is the specific humidity; 
i is the Karman constant; q

∗
 is the measurement scale 

for the specific humidity; fu, fT, fq are continuous 
universal functions; z0 is the height of roughness of the 
underlying surface. The Monin–Obukhov length scale 
L is determined by formula: 
 

L = u2

∗
/(i2 λT

∗
),  (2) 

 

where λ is the floatability parameter. 
Furthermore, without any loss of generality, we 

consider the problem of determining dynamic and 
heat fluxes.  Let the variations of wind velocity and 
temperature at N levels: 
 

yi = u(zi, θ) + ξ
(i)
1 ,    Ti = T(zi, θ) + ξ

(i)
2 ,    

 

E[ξ
(i)
j ] = 0,    E[ξ

(i)
j  ξ

(i1)
j ] = δii1

 σ
2
j,   

 

zi ∈ [ẑ, h],   i, i1= 1, N , j= 1, 2  (3) 

 

where E is the expectation; δ is the Kronecker delta; ẑ 
is the lower level of measurements; h is the upper level 
of measurements be set to determine the unknown 

vector of parameters θ = (u
∗
, T

∗
, L, T0, z0)

T
. 
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The estimation of the parameter vector θ is 
obtained by the minimum condition for the quadratic 
functional 
 

I(θ) = ∑
i=1

N

 {σ$2
1  [ui $ u(ẑ) $ u(zi, θ) + u(ẑ, θ)]

2
 + 

+ σ
$2
2  [Ti $ T(ẑ) $ T(zi, θ) + T(ẑ, θ)]

2
 }, (4) 

 

where the weighting factors σ1, σ2 are the rms errors 
of measuring the wind velocity and temperature, 
respectively. 

To find the minimum of the function (4), let us 
write Eqs. (1) in the following form: 
 

u(z) = ω1 fu ⎝
⎛
⎠
⎞z

L
 + ω2, T(z) = ω3 fT ⎝
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⎞z

L
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u
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i
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u
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i
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L
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Using linearity of the functions (5) with respect 

to ωi, i = 1, 4  and taking into account the necessary 

conditions of the minimum for the functional (4) one 
can easily obtain an explicit representation for the 
coefficients ωi for a fixed value of L.  Substituting 
the obtained expressions for u

∗
(L) and T

∗
(L) into 

Eq. (2) we find L from the obtained equation by the 
dichotomy method.  Then, the other parameters are 
calculated using given value L. 
 

2. PLANNING GRADIENT OBSERVATIONS 
 

Let us consider the problem of optimal location 
of gradient measurements of wind velocity and 
temperature, i.e., a plan of experiment corresponding 
to a certain optimum criterion.  We use the criterion 
of D–optimality as the D–optimum solution 
minimizes the determinant of the corresponding 
covariance matrix of the parameter estimations and 
by virtue of the equivalence theorem4 is 
simultaneously G–optimum, i.e., it minimizes the 
maximum variance of the response function. 

Since the dependence of the regression functions 
(1) on θ is nonlinear, the a priori construction of the 
optimum solution is, generally speaking, impossible.  
The consequent procedure of analysis and observation 
planning is the most convenient for the case of 
simultaneous measurements of several values.4  Such 
a formulation of the planning problem is expedient 
for stationary processes within a sufficiently large 
time interval. 

The construction of a local D–optimum solution 
is realized by the iteration procedure. 

1. Choose an arbitrary initial solution ε0 
satisfying the nondegeneracy condition for the 
information matrix 

⏐M(ε0, θ)⏐= ∑
i=1

N0

 F(zi, θ) F
T(zi, θ)  ≠ 0, 

where 
 

F(zi, θ) = ⏐⏐ f1(zi, θ), f2(zi, θ)⏐⏐ , 
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2. Calculate the LSM estimation θ̂0 and the 

matrix M(ε0, θ̂0). 
 
3. Find the point z* corresponding to 

max
z∈[ẑ, h]

 = Sp d(z, ε0, θ̂0), 

 

where 
 

d(z, ε0, θ) = FT(z, θ) M$1(ε0, θ) F(z, θ). 
 

4. Construct the solution 

ε = εN0+1 = ⎝
⎛

⎠
⎞1 $ 

1

N0 + 1
 ε0 + 

1

N0 + 1
 ε1(z*), 

 

and repeat operations 2–3 in correspondence to it. 
The cyclic performance of operations 2–4 is 

continued until the value 
 

⏐M$1(εN, θ̂N)⏐/N 
 

is less than a certain given value. 
 

3. NUMERICAL EXPERIMENTS 
 
Let us consider some examples of numerical 

construction of local D–optimum solutions for a 
variable upper boundary of the measurement and a 
given parameter vector θ which determines different 
conditions of the near–ground layer stratification.  
The Monin–Obukhov length scale L was chosen to 
be in the range from –50 to –10 and from 10 to 50 
as they characterize two qualitatively different 
regimes of turbulence.  The friction rate u

∗
 was taken 

to be 0.5 m/s both for the stable and unstable 
stratification.  So we emphasize the important part of 
temperature in the analysis of turbulence in the 
near–ground layer.  Since the approximation of wind 
velocity and temperature profiles by formulas (1) and 
(2) assumes the presence of the initial measurement 

level ẑ (the thickness of the displacement layer), the 

value ẑ was taken to be 1 m for the unstable 
stratification (what corresponds, for instance, to the 
grass level of a wheat field8), and 0.5 m for the case 
of a stable stratified near–ground layer. 

After the iteration procedure 1–4, we obtained the 
optimal plans of measurements. They are presented in 
the Table I. The analysis of the case of unstable 
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stratification (L > 0) demonstrates that three-point 
optimum measurement plans with the heights ẑ = 1 m, 
z1 = 2 m, z2 = 4 m are preferable for the parameter 
estimation with the growth of instability of the 
turbulent regime.  Besides, the weight of the middle 
point of the plan decreases with the decrease of the 
parameter L.  If the upper boundary of gradient 
measurements increases to 10 m, the plan is still three-
point with the mean level z1 ≈ 3 m.  At a weak 
instability, the number of the plan points can be 
reduced to two depending on the height of the upper 
boundary of observations.  The same is characteristic of 
weak stability.  Thus, under the conditions close to 
neutral stratification, it is sufficient to estimate the 
parameters at two levels.  For the conditions of strong 
and moderate stability, the obtained three-point 
optimum plans are as follows: ẑ = 0.5 m, z1 ≈ 1 m, 
z2 = 2 m. 
 
TABLE I.  Local D-optimum plans of gradient 
observations of wind velocity and temperature. 

 

The M-
O length 

scale  

 
Dynamic 

rate 

 
Measure-
ment level 

 
Plan of points 

L, m u
∗
, m/s ẑ, m  z1/P1 z2/P2 

– 10
 
 

 
0.5

 
 1

 
 

 
 

1.96/0.5 
2.62/0.45 

4/0.5 
10/0.55 

– 30
 
 

 
 

0.5
 
 1

 
 

2.14/0.29 
2.98/0.42 

4/0.71 
10/0.58 

– 50
 
 

 
 

0.5
 
 1

 
 

 
3.7/0.26 

4/1 
10/0.74 

– 50 
– 30 
– 10 

0.5 
0.5 
0.5 

0.5 
0.5 
0.5 

 
1.13/0.5 
1.07/0.5 

2/1 
2/0.5 
2/0.5 

 

The numerical modeling of optimum plans 
performed shows that the number of levels required 
for estimation of the parameters of the temperature-
inhomogeneous near–ground layer is rather 
redundant.  This seems to be not accidental as the 
constructed optimum plans of observation level 
arrangement correspond also to recommendations 
presented in Refs. 8 and 9. 
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