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In this paper we discuss the problem on observation of volume objects through 
the Earth's atmosphere. The results of our study are equations that describe the field 
of radiation scattered by a volume object as it is recorded with an imaging system 
through the atmosphere. It is shown that under certain conditions in the atmosphere 
the volume objects can be invisible. 

 
In order to describe theoretically conditions of vision of 

various objects one has to know the fields of radiation which 
they produce in the atmosphere. Then one may find, using 
these fields, the distribution of irradiation over the image 
plane of an optical system used (the eye, in case of visual 
observation). And finally, by employing techniques of the 
theory of linear systems, one can estimate the conditions of 
these objects vision. 

As to various plane emitters, the techniques to retrieve 
the fields they produce are quite well developed.1–4 Therefore, 
they can be useful in the theory of vision when analyzing 
observations of plane objects on the Earth's surface. However, 
these techniques are insufficient for many other tasks. 

In this paper we consider techniques of reconstructing of 
radiation fields from volume objects. Assume also that the 
object to be observed may be either on the Earth's surface or 
at an arbitrary height in the atmosphere. Assume, also, that an 
object of a certain shape is placed into the Earth's atmosphere 
at a height h. One needs to find the radiation field produced 
by the object at an arbitrary point r in the atmosphere. We 
search for an operator solution of this problem. We introduce 
operators which describe interaction between the radiation and 
the atmosphere free of any object La, interaction between an 

object and radiation Lo, interaction of radiation with the 

Earth's surface Ls. The equation for radiation brightness I in 

the atmosphere may then be written as follows: 
 

Là

 
I= ( Lî + Ls) I. (1) 

 

Let us introduce two auxiliary parameters
 
so and ss, using 

which equation (1) may be written in the form: 
 

( Là –
 sî Lî – ss Ls) I=

 
0. (2) 

 

We seek a solution of Eq.
 
(2) in the form 

 

I
 
= ∑

k = 0

∞

  ∑
l = 0

∞

  Ik l ( so )k ( ss )
l.  (3) 

 
The physical meaning of the function Ikl is that it decribes 

the radiation reflected from an object and the Earth's 
surface k times and l times, respectively. By substituting 
Eq. (3) into Eq. (2) and equating the terms with equal 
powers of so and ss, we obtain: 

 

Là Ik l

 
– Lî Ik – 1; l – Ls Ik; l – 1 = 0. (4) 

 

As result for radiation reflected solely from the Earth's 
atmosphere (described by the function I00), for radiation only 

once reflected from an object (function I10), for radiation only 

once reflected from the Earth's surface (function I01), and for 

radiation reflected once from the Earth's surface and once 
from the object (function I11) equations (4) yield  

 

Là I00 =
 0; 

Là I10 =
 
L0 I00 ; 

Là I01 =
 
Ls I00 ; (5) 

Là I11 = Lî

 
I01 + Ls I10. 

 

The
 
first of these equations describes the atmospheric 

haze, the third – radiation reflected from the Earth's 
surface, second and fourth equations – the two components 
of radiation produced by a volume object placed into the 
atmosphere. The total radiation reflected by the observed 
object is, apparently, equal to 

 

Iî =
 
I10 + I11. (6) 

 
By summing the second and the fourth equations of the 
system (5) we obtain: 
 

Là Iî

 
= Lî( I00 + I01) + Ls I10.  (7) 

 

Based on the equation (7) we may write an operator 
expression for the radiation brightness produced by the 
object observed  
 

Iî( r;Ω ) =
 
L à

–1 {Lî( I00 + I01) + Ls I10}, (8) 
 

where L–1
a  is the operator inverse to the operator La. 

Expression (8) makes it possible to reconstruct the 
field of radiation produced by objects due to emission and 
reflection of light from their surfaces. However, it does not 
allow any description of one more factor affecting the 
conditions of objects vision, that is, the screening of 
radiation propagating through the atmosphere by objects. 
As a result of such a screening, "black" objects can be 
observed, while being neither reflector nor the emitter of 
radiation. According to Eq. (8), we have for such objects 
Lo = 0 and Io = 0.  

Screening may be accounted for if one describes the 
object by the operator of absorption T(ρ; Ω). If a beam, 
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propagated along Ω direction is incident into the point ρ of 
the object and is absorbed there, then T = 1, otherwise 
T = 0. The introduction of the operator T makes possible to 
relate brightness Iap incident on the rear surface of the 

object to the radiation brightness at the front side Ià p
+  

 
Ià p
+

 = T Ià p. (9) 

 
Taking this into account we may write an expression for the 
brightness of a volume object, which would account for 
screening, as follows: 
 

Ios(r; Ω)
 
= L à

–1 {Lî( I00 + I01) + Ls I10 – TIà p}. (10) 

 
The term L à

–1LsI10 in expression (10) describes 

radiation coming from the object and to the plane of inlet 
of the optical system after reflection from the Earth's 
surface. For the majority of realistic situations, the 
influence of this factor can be neglected. 

As is seen from expression (10), the function Ios(r; Ω) 

may be both positive and negative. The positive sign of the 
Ios(r; Ω) function indicates that the object is observed as a 

bright spot against the sky background, and the negative 
sign corresponds to the same object being observed as a dark 
spot. A situation is also possible when Ios(r; Ω) = 0. In this 

case the object will remain invisible against the background 
from sky and the Earth's surface. 

To perform computations one needs to have explicit 
expressions for operators entering into Eq. (10). It is clear 
that the operator La is the operator of the equation of 

radiation transfer: 
 

Là I
 
= Ω⋅∇I – ε I – ⌡⌠

4π

 σ(γ) I(Ω′) dΩ′, 

 
where ε = ε(r') and σ(γ) = σ(r'; γ) are the coefficients of 
extinction and differential scattering of radiation by the 
atmosphere at the point r'. 
 

 
 
FIG. 1. On computing the reflected radiation brightness 
 

Assume that the Earth's surface is described by 
equation z = F(ρ), where ρ is the projection of radius-vector 
r on the horizontal surface (the X0Y plane). In this case the 
operator Ls may be written in the form: 

 

Ls I = (1/π) ⌡⌠
2π

 dΩ′ | Ω′⋅N(r) | β(Ω;Ω′;r) I(Ω′) dΩ′ δ( z – F(ρ)), 

 

where β(Ω; Ω'; r) is the surface brightness coefficient at the 
point r; N(r) is the normal to the surface at that point; δ(z) 
is delta-function. 

Let us now derive an explicit expression for the 
function Ios(r; Ω). Figure 1 shows an element of the surface 

of the object dσ centered at r
σ
. This element has its normal 

N
σ
. According to the definition of radiation brightness the 

energy emitted by this element into the elementary solid 
angle dp is dΦ = B(r

σ
; p) | (N

σ
⋅π) | dσdp, where B(r

σ
; p) is 

the surface brightness. Energy transfered through the 
elementary surface dσ01 normal to radius-vector r, is 

 

dΦ = B(r
σ
; p) | N

σ
 ⋅ p) | G(r

σ
; r; Ω; p) dσ dp, 

 

where G(.) is the Greene's function for the equation of 
radiation transfer from mono-directional emitters. Energy 
transfered through the surface area dσ, normal to Ω, is 
dΨ = dΦ⏐p⋅Ω⏐. As follows from the definition of brightness 
the value dΨ is exactly equal to radiation brightness 
dI(r, Ω) produced by the element dσ. Brightness of 
radiation emitted by the object as a whole is equal to 
 

Io(r;Ω) = ⌡⌠ dp ⌡⌠ dσB(r
σ
; p) | N

σ
⋅p | | p⋅Ω | G(r

σ
; r;Ω; p). (11) 

 
Expression (11) does not account for the fact that the 

object surface may only be illuminated from outside, when 
N

σ
⋅p > 0. This feature may be accounted for by introducing 

the following function: 
 

H( p⋅N
σ
) = 

⎩
⎨
⎧1 if p⋅N

σ
 > 0,

0 if p⋅N
σ
 < 0.  (12) 

 
The element dσ may also be shadowed by the adjacent 
elements of the surface. The effect of such a shadowing may 
be easily accounted for by a function F(p, ρ), its definition 
being illustrated in Fig. 2. 
 

 
 
FIG. 2. On the definition of the shadowing function 
 

Let the equation of the object surface be written in the 
form z = ϕ(ρ). Equation for the ray coming to the point ρ

σ
 

in the direction p has the form: 
 
ρ = ρ

σ
 – [z – z

σ
]( p

⊥
/pz ).  

 
where p1 is the projection of p onto the X0Y plane, pz is the 

direction cosine of the vector p with respect to the axis z; 
r = {ρ, z}, r

σ
 = {ρ

σ
, z}. Aparently, if this ray is shadowed by 

some element of the surface, there are solutions of the 
equation 
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ρ = ρ
σ
 – [ϕ(ρ) – z

σ
]( p

⊥
/pz ). (13) 

 
Thus, the function of shadowing F(p; ρ) is equal to 

unit for p and ρ such that no solution of Eq. (13) exists, 
and it is equal to zero for p and ρ, which satisfy Eq. (13). 

With the account for shadowing, equality (11) can be 
written as follows: 
 

Io(r;Ω)=⌡⌠ dp ⌡⌠ dσ B(r
σ
; p) |N

σ
⋅p| | p⋅Ω| × 

 
× G(r

σ
; r; Ω; p) H( p⋅N

σ
) F( p; ρ

σ
), (14) 

 
while the account for screening results in the following 
expression: 
 

Ios(r;Ω)
 
= ⌡⌠ dp ⌡⌠ dσ B(r

σ
; p) | N

σ
⋅p | | p⋅Ω | × 

 

× G(r
σ
; r; Ω; p) H(p⋅N

σ
) F( p; ρ

σ
) –

 
⌡⌠ dp ⌡⌠ dσ Ià p(r

σ
; p) × 

 
× T(r

σ
; p) G(r

σ
; r; Ω; p). (15) 

 
Within the small angle approximation1–3 formula (15) 

may be significantly simplified, since within this 
approximation p ≈ Ω. As a result we have 
 

Ios(r;Ω) = ⌡⌠ dσ B(r
σ
; p) | N

σ
⋅p | Gd (rσ; r; Ω) H(Ω⋅N

σ
) × 

 

× F(Ω; ρ
σ
) – ⌡⌠ dσ Iap ( rσ; Ω) T(r

σ
; Ω) Gd (rσ; r; Ω), (16) 

 
where Gd(◊) is the Green's function for the case of diffuse 

emitters. 
As a rule, brightness B(r

σ
; Ω) entering into Eq. (15) 

consists of two components: brightness of the reflected solar 
radiation and brightness of thermal radiation. Brightness of 
the reflected solar radiation B(r

σ
; Ω) may be written as 

follows: 
 

B(ρ
σ
; Ω)

 

= (1/π) ⌡⌠
2π

 β(Ω; Ω′; ρ
σ
) Ias( ρσ; Ω′) | Ω′⋅N

σ
 | × 

 
× H( – Ω′⋅N

σ
 | F(Ω; ρ

σ
) dΩ′, (17) 

 
where the brightness of the point ρ

σ
 of the object surface 

due to radiation scattered by the atmospheric haze and by 
radiation reflected from the Earth's surface is Ias(ρσ; Ω) = 

= I00(ρσ; Ω) + I01(ρσ; Ω). 

Brightness of thermal radiation of the object may be 
written in the form 
 
Bt( ρ

σ
; Ω) = (1/π) ε0 (ρ

σ
; Ω) Φ0 [T 0 (ρ

σ
)] H(Ω⋅N

σ
) F(Ω; ρ

σ
), 

 
where ε0(.) and Φ0(.) are the coefficient of directional 
emission and the Planck function, respectively, and T0(.) is 
temperature. 

Formula (17) permits further simplification for small-
size objects, such that their size is much smaller than the 
width of the Green's function. In this case 
 
I0(r; Ω) g Q∗ Gd(r0; r; Ω), (18) 

 
where r0 is the coordinate of the object center,  

 

Q∗ = ⌡⌠
r

 dσ B(r
σ
⋅ Ω) | N

σ
⋅Ω | H(Ω⋅N

σ
) F(Ω; ρ

σ
) – 

 

– ⌡⌠ dσ Ià p(r
σ
; Ω) T(r

σ
; Ω). (19) 

 
Below we shall call the value Q∗ the "equivalent 

brightness of the object". It may be seen from Eq. (19) that 
this value may be either positive or negative. 

As a rule, observations of objects use some optical and 
electronic instrumentation. As shown in Ref. 2, the 
"atmosphere – opto-electronic instrument" imaging system 
may often be considered isoplanar. Then, to describe optical 
image, one should use the convolution of the Green's 
function from the radiation transfer equation for an 
atmospheric layer with that for the opto-electronic system 
(formulas (16) and (18), with corresponding scaling). In 
this case, formulas (16) and (18) will describe irradiation in 
the image plane when the optical system is aimed at an 
object along the direction of the vector Ω. 

The above expressions make it possible to consider 
both the statistical and deterministic versions of the theory 
of vision. Within the framework of statistical theory 
expressions for light fields will describe stochastic 
realizations of the field for a 3D-inhomogeneous stochastic 
atmosphere and a 2D-inhomogeneous stochastic Earth's 
surface2. Statistical characteristics of the detectability 
conditions in this case could be determined using methods 
of statistical estimating of the radiation fields in the Earth's 
atmosphere.2 In this paper we only consider the case of the 
volume objects vision within the simplest deterministic 
models of the atmosphere and the Earth's surface. 

Consider, by the way of example, the case of a spherical 
diffusely reflecting object. The equation of the object surface 
in this case has the form x2 + y2 + z2 – R2 = 0, where R is 
the radius of the revelant sphere, and the equation of the 
normal is N = (xi + yj +zk)/R, where i, j, and k are unit 
vectors along the x, y, and z axes of the Cartesian system of 
coordinates. We denote the polar and the azimuthal angles of 
the vectors of irradiation Ω′′, observation Ω, and normal N, as 
(θ′′, ϕ′′), (θ, ϕ), and (θn, ϕn), respectively. Then, taking into 

account only reflected solar radiation we have 
 

Q∗ = R2 ⌡⌠
0

π

  sin θn dθn ⌡⌠
0

2π

 dϕn Bp(θn; ϕn) | Nσ
⋅Ω |× 

 
× H(Ω⋅N

σ
) – π Ià p(Ω) R2, (20) 

 
where  

Bp(θn; ϕn) = 
b
p ⌡⌠

0

π

 sin θ′′ dθ′′ ⌡⌠
0

2π

 dϕ′′ I00(Ω′′) | Ω′′⋅N
σ
| × 

× H(– Ω′′N
σ
); (21) 
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N
σ
 = sin θn cos ϕn i + sin θn sin ϕn j + cos θn k; 

 

N
σ
⋅Ω = sin θ sin θn cos (θ – θn) + cos θ cos θn; 

 

N
σ
⋅Ω′′ = sin θ′′ sin θn cos (ϕ′′ – ϕn) + cos θ′′ cos θn, 

 
and β is the coefficient of brightness of the spherical surface. 

The dependence of Q∗ on the brightness coefficient 
of the sphere β is shown in Fig. 3 for several directions of 
sighting, typical cloudless atmospheric conditions, and for 
R = 1 m. Computations were conducted according to 
formulas (20) and (21) for an absolutely absorbing 
Earth's surface with its zero brightness coefficient. 
Atmospheric haze brightness was determined using the 
quasi-single-scattering small angle approximation, 
described in Ref. 2. 

As seen from the data presented, the sphere will be 
seen differently depending on the observational 
conditions. At θ = 180° a black sphere on the black 
Earth's surface will naturally be invisible. The sphere 
will apparently seem lighter for larger β. At the same 
time, such a sphere at 6 km height in the atmosphere will 
be seen as a dark spot for β = 0. This is quite apparent 
physically, since in the latter case the dark sphere will be 
observed against the background of atmospheric haze, and 
at β ≈ 0.02 it will become invisible. Depending on the 
value of β, conditions for observations along a horizontal 
direction will also vary quite significantly. For example, 
when observing the shadowed side of the sphere in the 
direction 1 (see the insert in Fig. 3), the sphere will seem 
dark, and when observing its illuminated side in the 
direction 3 it will seem dark for β < 0.37, and light for 
β > 0.37. At β = 0.37 the sphere will become invisible. 
 

 
 
FIG. 3. Equivalent brightness of the sphere vs. its surface 
reflection coefficient for θ0 = 60°, θ = 180°, h = 0 (1), 

θ = 180°, h = 6 km (2), θ = 90°, h = 0 (3). 
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