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Propagation of the amplitude–modulated electromagnetic wave through a gas of 
resonant atoms is considered. It is shown that the nonlinear energy transfer from a 
strong field to weak fields takes place under certain conditions. Numerical 
calculations of the field intensities are performed.  

 
The problem on the propagation of amplitude–

modulated radiation through a medium of two–level 
quantum systems is usually discussed in the approximation 
of a strong field.1–5,6 The authors of Ref. 6 claim that the 
"coupling reaction", i.e. , the diminishment of the intensity 
of a nonlinear field, whose energy is "transferred" with two-
level systems to "side" components, cannot be neglected: 
moreover this is the coupling reaction which should classify 
the type of the problem. In our paper we develop a 
consistent semi classical electrostatics of this process, which 
uses the small parameters natural in this case.  

Let us represent the electromagnetic field incident on 
the medium in the following form:  

 

E
inc

 = E(0)(1 + μcosΩ t) cosωt , (1) 
 

where E(0) is the amplitude of a linearly polarized field, μ 
and Ω are the depth and frequency of modulation, ω is the 
carrier frequency, and Ω n ω. The field in the medium can 
be represented in the form  

 

E = E
0
(z) exp(–iωt) + E

1
(z) exp(+iω

1
t) + 

 

+ E
2
(z) exp(–iω

2
t) + c. c. , (2) 

 

where ω
1
 = ω + Ω, ω

2
 = ω – Ω, and z is the coordinate 

counted off from the point of incidence of the beam in the 
direction of its propagation inside the medium.  

Let us assume that the medium consists of two–level 
atoms and the transition frequency ω

21
 = ω.  

Let the system of equations for a density matrix be 
written as follows:  

 

i � 
⎝
⎛

⎠
⎞∂u

∂t + 
u – 1

T
1

 + 2d(E
0
(z) exp(–iωt) + c. c.) × 

 

× (ρ
21

 + c. c.) = –2d(E
1
(z) exp(–iω

1
t) + 

 

+ E
2
(z) exp(–iω

2
t) + c. c.) (ρ

21
 + c. c.) , 

 

i � 
⎝
⎛

⎠
⎞∂r

21

∂t  + ρ
21⎝
⎛

⎠
⎞1

T
2
 + iω  + d(E

0
(z) exp(–iωt) + c. c.) u = 

 

= –d(E
1
(z) exp(–iω

1
t) + E

2
(z) exp(–iω

2
t) + c. c.) u , (3) 

 

where u = ρ
11

 – ρ
22

, d is the dipole moment of the 

transition, T
1
 and T

2
 are the longitudinal and transverse 

relaxation times. Here and below the matrix coefficients 
ρij(i, j = 1, 2) are considered to be dependent of z and t.  

Solving the system of Eqs. (3), we may determine the 
polarization of the medium  

 

P = Ntrρd = N (dρ
21

 + c. c.) , (4) 
 

where N is the density of atoms.  
 

THE PERTURBATION THEORY  
 
We shall consider now the regime of weak modulation 

when m n 1, i.e., the fields E
1
(z) and E

2
(z) are assumed to 

be weak. Let us construct the perturbation theory for these 
fields using the system of Eqs. (3). In zero approximation, 
this system can be solved by equaling its right side to zero. 
It is a well-known approximation which describes the 
saturation effect  

 

u(0) = (1 + 4T
1
T

2
a2(z))–1 , ρ

21 
(0) = χ(0)(z) E

0
(z) exp(–iωt) , 

 

χ(0)(z) = i 
d ⋅ T

2

�
 u0(z) , a(z) ≡ 

⏐E
0
(z)⏐⋅d

�
 . (5) 

 

In the first approximation, we substitute u(0) and 

ρ(0)
21 

 to the right side of system (3) and u = u(0) + u(1), 

ρ
21

 = ρ(0)
21 

 + ρ(1)
21 

 to the left side. The resulting system of 

equation is similar to Eq. (3) in which ρ
21

 and u replaces 

ρ(0)
21 

 and u(0) in its right side and ρ
21

 and u replaces ρ(1)
21 

 

and u(1) in its left side. Then it becomes evident that  

ρ(1)
21 

 ∼ exp(–iω
1
t) and exp(–iω

2
t) and u(1) ∼ exp(±iΩ t).  

Thus, we obtain in the first approximation  
 

ρ
21 
(1) = χ

1
(z) E

1
(z) exp(–iω

1
t) + χ

2
(z) E

2
(z) exp(–iω

2
t) , (6) 

 
in addition, χ

1
 = –χ

2
*.  
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1
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1
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2

 + Ω2

⎝
⎛

⎠
⎞1

T
1
 + 

1
T

2

2

 . (7) 

 

Substituting Eqs. (6) and (7) into Eq. (4), we can see 
that in the first approximation polarization arises at 
frequencies of weak fields. Since a(z) ∼ ⏐E

0
(z)⏐, it is 

possible to note that in this approximation weak fields 
depend on the strong field E

0
(z).  

The second order of the perturbation theory can be 
obtained in analogy with the first order of this theory: i.e., 
for u and ρ

21
 in the right side of Eqs. (3) we substitute 

u(0) + u(1) and ρ(0)
21 

 + ρ(1)
21 

 and in the left side we substitute 

u(0) + u(1) + u(2) and ρ(0)
21 

 + ρ(1)
21 

 + ρ(2)
21 

. In this case  

ρ(2)
21 

 ∼ exp(–iωt) and exp(–i(ω±2Ω)t). It can easily be 

shown, that for the fields E′ 
∂⏐E′⏐2

∂z  ∼ ⏐E
1
⏐2 ⏐E′⏐ at 

frequencies (ω±2Ω), and in the second order of the 
perturbation theory these fields can be neglected. Thus, in 
the second order we have  

 

ρ
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u(2) = – 4T
1
 
d

�
 [ ] 

 
⏐E

0
(z)⏐2 Imχ(2) + 2⏐E

1
(z)⏐2 Imχ

1
(z)  .(9) 

 
The second order of the perturbation theory reveals a 

coupling reaction of the waves; the expression for χ(2) shows 
how variations of the fields at frequencies ω±Ω affect the 
propagation of the strong field (χ(2) ∼ ⏐E

1
⏐2). Thus, 

eliminating a strong field in the zero approximation, it is 
possible to construct the perturbation theory which 
correctly describes the behavior of three waves (2) in a 
resonance medium.  

The motion of atoms can be taken into account going 
over to a reference system affixed to the atom, and the 
problem can be reduced to the Doppler frequency shift: 

ω′ = ω – kν, ω
1
′ ≈ ω

1
 – kν, and ω

2
′ ≈ ω

2
 – kν, where ν is the 

projection of the atomic velocity onto the direction of wave 
propagation, k is the wave vector. Corresponding formulas, 
which take into account the Doppler effect, are given in 
Appendix.  

 
EQUATION FOR FIELD INTENSITIES  

 
Let us write an equation for the field 
 

∂2E

∂z2  – 
1

c2 
∂2E

∂t2
 = 

4π
c2 

∂2P

∂t2
 , (10) 

 

where the field E and the polarization P have, in our case, 
the form  

 

E = ⏐E
0
(z)⏐ exp(i(ϕ

0
 – ωt)) + ⏐E

1
(z)⏐ exp(i(ϕ

1
 – ω

1
t)) + 

 

+ ⏐E
2
(z)⏐ exp(i(ϕ

2
 – ω

2
t)) + c. c. 

 

P = Nd[(χ(0)(z) + χ(2)(z))⏐E
0
(z)⏐ exp(i(ϕ

0
– ωt)) + 

 

+ χ
1
(z) ⏐E

1
(z)⏐ exp(i(ϕ

1
 – ω

1
t)) + 

 

+ χ
2
(z) ⏐E

2
(z)⏐ exp(i(ϕ

2
 – ω

2
t))] + c. c. (11) 

 

Here ϕα = nα 
ωα
c  z, nα is the index of refraction at the 

frequency ωα, and α = 0, 1, 2. By substituting Eq. (11) 

into Eq. (10), we derive the following system of equations: 
 

1 – n
α

2 = – 4πNd . Reχ
α

 , (12) 
 

∂⏐E
α

⏐

∂z  = –
2πω
c  Nd ⏐E

α

(z)⏐ Imχ
α

 . (13) 

 

Here χ
0
 ≡ χ(0) + χ(2). From Eq. (12) it follows that 

2ϕ
0
 = ϕ

1
 + ϕ

2
. From Eq. (13) as well as from the fact that 

χ
1
 = –χ

2
* it follows that the boundary amplitudes are identical 

⎜E
1
⎜ = ⎜E

2
⎜. Let us rewrite Eq. (13) for the intensities  

 

∂I
0

∂z  = –
4πω
c  Nd I

0
(z) [Imχ(0) + I

1
(z)η] ,  

 

∂I
1
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4πω
c  Nd I

1
(z) Imχ

1
(z) , (14) 

 

I
α
(z) ≡ ⏐E

α
(z)⏐2

 ,  η(z) = Imχ(2)/I
1
(z) . (15) 

 
It should be noted that χ

1, 
χ(0), and η depend on I

0
(z), since 

a ≡ 
⎜E

0
(z)⎜ d

�
. It is clear from Eq. (14) that the behavior of 

weak fields is determined by Imχ
1
 which is a function of the 

strong ield amplitude in the medium, and when Imχ
1
 < 0 

weak fields become stronger. Using Eq. (7), we may write 
this condition in the form  
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From here it is possible to find the amplitude of the strong 
field E

0s
(z) at which weak fields can be amplified:  
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2
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(17) 

 

Shown in Fig. 1 is the function f ≡ –
�

T 2d
 Imχ

1
⋅104 vs 

ξ ≡ lg 
⎜E

0
(z)⎜T

2
d

� ⋅ 0.8
, i.e., the dependence of the function Imχ

1
 

on the amplitude of the strong field E
0
(z) taking into 

account the Doppler effect. In the calculations the 
following values of the parameters were used: 
T

1
 = T

2
 = 1.6⋅10–8 s, Ω = 2⋅108 s–1, ω

0
 = 3.2⋅1015 s–1, and 

m indicated the atomic mass of Na. An averaging over 
velocity was based on a Maxwell velocity distribution at a 
temperature of 300 K.  
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FIG. 1. A plot of the function f vs ⏐E
0
(z)⏐. Here  

f ≡ –
�

dT
2
 Imχ

1
⋅104, ξ ≡ lg

⎝
⎜
⎛

⎠
⎟
⎞⏐E

0
(z)⏐dT

2

0.8 �
. 

 

It becomes clear from the foregoing discussions that 
the approximation of the strong field appears to be 
inadequate and the second order of the perturbation theory 
describing the coupling reaction of waves became important. 
An amplification of the weak fields arising from the strong 
field will take place until the strong field diminishes up to 
the values determined by Eq. (17). It is evident from the 
system of Eq. (14) that the attenuation of the strong field 
depends on the weak fields. Thus, Fig. 2 shows the z–
behavior of the intensity I

1
(z). Here z

s
 is the distance at 

which the strong field intensity I
0
 diminishes up to the 

values given by Eq. (17). At sufficiently large z, i.e., when 
z . z

s
, the coupling of the waves E

1
 and E

0
 fails and the 

ordinary dissipative attenuation of the fields occurs.  
 

 
 

FIG. 2. The intensity I
1
 as a function of distance z inside 

the medium.  
 

Let us now estimate the distance z
s
 in the zero 

approximation. In doing this, we write the first equation of 
the system (14) in the form  
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from which one can easily obtain  
 

z
s
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c�

4πωNd 2T
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⎢
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⎤4T

1
T
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0
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s
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I
0
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s
)

I
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where I
0
(z

s
) = ⏐E

0s
⏐2 and I

0
(0) = ⏐E

0
(0)⏐2 = 

E(0)2

4 /E(0) is 

given by formula (1).  
Let us now examine the dependence of the function η 

given by Eq. (15) on ⏐E
0
(z)⏐ which describes the coupling 

reaction of the waves. For simplicity, we assume that 
T

1
 = T

2
 = T. It is then clear from Eq. (6) that η < 0 when  

4a2 < Ω2 + 
3

T 2 and Imχ
1
 < 0 when 4a2(z) > Ω2 + 

1

T 2. Thus, for 

such amplitudes of the strong field that  

1

T 2 + Ω2 < 4
⎝
⎜
⎛

⎠
⎟
⎞⎜E

0
(z)⎜d

�

2

 < 
3

T 2 + Ω2 weak fields become 

stronger and the strong field attenuates slower than it does 
in the absence of the fields E

1
 and E

2
. This effect is 

associated with decrease of the population of the upper level 
ρ

22
 = (1 – u)/2 due to the interaction between the waves 

and, as a result, with decrease of the relaxation losses of the 
field energy E

0
(z), which is proportional to the population 

of this level, in comparison with the zero approximation. 
The relaxation loss of the wave energy per unit time is 

Q = 
�ω

2T (1 – u). It follows from Eq. (9) that when η < 0 

and Imχ
1
 < 0, the value of u(2) is always positive, i.e., Q 

actually decreases in comparison with the zero 
approximation. For the values of a2(z) being beyond the 

interval ( )
1

T2 + Ω2,
3

T2 + Ω2 , the values η and Imχ
1
 are 

opposite in sign, i.e., amplification of weak fields results in 
corresponding attenuation of the strong field.  

 
CONCLUSION  

 
The paper describes the propagation of the amplitude–

modulated wave with small depth of modulation through 
the resonance medium. The latter circumstance made it 
possible to develop the perturbation theory which is based 
on the small value of the modulation depth or, in other 
words, on the smaller amplitudes of the two "side" waves 
compared to the strong "central" field. It has been shown 
that under certain conditions there occurs amplification of 
weak waves affecting the strong wave propagation. In 
particular, we have found the possibility of amplifying weak 
waves and simultaneously decreasing the strong wave 
attenuation in comparison with the propagation of a single 
wave. This effect has been interpreted. The distance was 
determined, at which weak fields are being amplified, as a 
function of the strong–field amplitude at the medium 
boundary. The estimates confirm an essential role of the 
coupling reaction of the during their waves propagation.6  

 
APPENDIX  

 
Let us introduce the notations 

b ≡ dT
2
/(1 + T

2
T

1
4a2 + (T

2
 kν2) �). After averaging of the 

velocity over a Maxwell velocity distribution, we obtain the 
following expression for χ, χ

1 
and χ

2
:  

 

<Imχ(0)> = <b>, <Reχ(0)> = 0,  (A.1) 
 

<Imc
1
> = <b 

c
1
s – c

2
r

r2 + s2
> , <Reχ

1
> = <b 

c
1
r + c

2
s

r2 + s2
>,  (A.2) 
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