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In this paper we discuss the methodological problems that arise in planning and conducting
specialized large-scale observational experiments on investigating energy exchange processes in climatic
systems. The investigations are based on application of the methods of direct and inverse modeling in the
framework of the scenario approach. Based the aim of an experiment, a set of functionals is formulated,
and the information content is evaluated from these functionals by the methods of theory of model
sensitivity. The results of numerical simulation of observational experiments along the Moscow—

Vladivostok main line are presented as an example.

Introduction

The main goal of this work is to develop the
methodology and accumulate an experience in solving
problems on informational support of the idea of
“purposeful” monitoring. Traditionally, purposeful
monitoring is aimed at solving preset problems, such as,
for example, revealing of pollution sources, provision of
mathematical models with factual evidences, detection
of substances being secondary products of gaseous
pollutants and predicted by models but absent in
primary exhausts, etc. The approach combining
mathematical modeling and purposeful monitoring has
been developed within the framework of the Integration
Project IG SB RAS—97 No. 30 (Ref. 1).

Numerous problems arise when conducting field
experiments, and the problem of information content
of the obtained experimental data is among them.
Studies of the information content are based on the use
of methods of direct and inverse modeling and solution
of specific inverse problems in the framework of the
scenario approach. On the basis of the aims of an
experiment, a set of functionals that describe the
results of atmospheric observations is formulated, and
the information content of the observational
experiments is evaluated from their behavior in the
space of model parameters. For these functionals,
sensitivity functions are calculated. These functions
serve for seeking informative areas for every individual
observation and for the whole totality of observations;
then the relative hazard of a pollution source is
estimated from the standpoint of the atmospheric
quality in a detector zone.

The computational algorithms for sensitivity
functions involve solutions of the corresponding
conjugate problems. Various aspects of application of
conjugate equations to analysis of complex systems are
described in Ref. 2.

In this paper, we use the variational principle
developed in Refs. 3—5 for numerical simulation and
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combined usage of models and measurements. This
principle is based on the methods of classic theory of
calculus of variations modified for operating in finite-
dimensional spaces of discrete approximations of models.
Application of this principle forms a unified constructive
basis for the entire sequence of mathematical modeling:
from construction of discrete analogs for the models of
studied processes to systematic organization of algorithms
for direct and inverse modeling and optimizing
procedures. The conjugate problems for the models of
processes arise therewith as a consequence of the
variational principle when studying sensitivity of the
model to variations of input data and when obtaining
optimal estimates of the functionals defined in the set
of the functions of state of these models.

Algorithms for estimation of functionals

Let us consider the problem of estimating the
functionals defined in the set of the functions of state
of a climatic system subjected to some natural and
anthropogenic factors.

With the help of the functionals that are
generalized characteristics of the system behavior, we
can describe various aspects of the studied and modeled
processes, as well as observations of these processes.
Therefore, in practice, there can be a great deal of
functionals with different information content.

To describe the behavior of the climatic system,
we use the set of models of hydrothermodynamics,
pollutant transport and transformation, and hydrologic
cycle, which usually take part in related problems of
ecology and climate.6~7

To avoid constructing algorithms for every type of
functionals individually, we propose the universal
scheme of algorithms for estimating the functionals of
the general form and show the way of including any
particular functional in this scheme. The functionals
for which these methods are true must have the
following properties.
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1. Let the mathematical models and state
functions be defined in the space-time domain D;, and
their discrete analogs are defined in D}tl O Dy. Then the
functionals must be limited and differentiable with
respect to the state functions in D;. In its turn, the
continuous dependence of the state functions on the
input parameters of the model is a consequence of well-
posedness of the corresponding problems.

2. The functionals can necessarily be represented
as integrals in the domain D, with Radon or Dirac
measures.® These measures are elements of the space
conjugate to the space of state functions. The discrete
analogs of the functionals are determined as cubature
sums in Dltl with the same digitization of the state
functions as in mathematical models.

Thus, the functionals can be presented in the form

(P) = J Fu@xp(x, ) dDdt, k= 1, K ,K=21. (1)

Here Fj(¢) are the characteristics of the state functions
to be estimated. Their form is defined by
an investigator based on the properties formulated
above; Xp(x,t) are the weight functions with carriers
DY 0 Dy; Xp(x, t) dD dt are the Radon measures in
D; meeting the

conditions of normalization

J Xe(x,t) dDdt = 1. If DY, is a set of points (more

Dy

than one point), then X(x, ) dD dt are the Dirac
measures in D; (Ref. 8). Functionals (1) always have
the form of scalar product, therefore the structures of
the functions Fr(¢) and X(x, t) must be coordinated,
i.e., they both must be either scalar or vector.

Functionals (1) can be treated as generalized
characteristics of the processes under study obtained
from monitoring or mathematical modeling. Now we
can refine the sense of the weight functions X,(x, t) in
Eq. (1) from the monitoring standpoint:

(1) They may be the distribution functions of the
observational instruments (detectors) used for weighted
estimation of the functions F () in Dy;

(2) The carrier of the weight function Xj(x, t),
i.e., the set of points (x, t), at which the function is
nonzero, describes arrangement of instruments in space
and time; the domain D(t)k can be treated as the detector
zone for corresponding functional;

(3) Values of xp(x, t) determine the weight with
which the function Fp(¢) at the point (x, ¢) is taken
into account in the final equation ®,(¢) for the
estimated characteristic.

Our task is to link variations of functionals (1)
directly to variations of the input parameters and
external sources in the models in the optimal way.
Here the optimal way means that variations of the
characteristics to be estimated are independent of
variations of the state functions inside the domain D;.
The needed estimates can be found by the methods of
sensitivity theory from the conditions that the
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functionals (1) are stationary to variations of the state
functions provided that the latter ones meet the
equations of the models of processes or their discrete
analogs. In other words, the models of processes serve
as restrictions to the class of functions and as links
between the state functions, parameters, and sources.

To construct the discrete analogs of the models
and modeling algorithms, the variational formulations
of the models in the form of integral identity

1(p, %, Y) =0 ; 2)

are most suitable.47 Here ¢ is the state function, Y is
the vector of parameters of the model and external
sources, R(D;) is the domain of their permissible
values, ¢* is an arbitrary sufficiently smooth function
from the space Q*(D;) conjugate to the space of the
state functions Q(D;). Note that the weight functions
in Eq. (1) also belong to this conjugate space. It is
important that the functional (2) is linear with respect
to the vector ¢*.

If the model from the problem (2) is treated as a
restriction, then, based on the technique of calculus of
variations, the functionals (1) can be replaced by a
family of extended functionals equivalent to the initial
ones in the set of the state functions of the model

BL(6) = D) + 1(h, b*, Y) . 3)

In this case ¢* can be considered as a generalized
Lagrange factor or as a weight function for taking into
account the equations of the model.

The optimal scheme of estimates results from the
conditions that variations of the discrete analogs of the
functionals (1)—(3) are independent of variations of the
functions ¢ and ¢* in D’Z. These conditions lead to the

set of equations

9
FrE

0o
355 e L4C6 +800) + (o + 509, 1| _ H=o,
5)

where the superscript 7 marks the discrete analogs, o
are variations of the state function, & is a real
parameter. The functional I($, ¢*, Y) is digitized by
the methods of weak approximation, splitting, and
decomposition.46

Equations (4) are the discrete analog of the
models of processes, and Eq. (5) is a set of conjugate
problems for the functionals (1). In the conjugate
problems constructed in such a way, the functions

(¢, ¢*,Y) =0, (4)

0 o
e =355 e [F@ + 81|, Fxxo ©

generated by the functionals (1) play the role of
sources. In Eq. (5) they always have the structure of a
column vector chosen with regard for coordination of
the cubature formulas for digitizing the summand
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functionals in Eq. (3). These problems are solved back
in time under the initial conditions or(x,t) =0at t= t
, where ¢ denotes the last value of time ¢ at which the
function n; is nonzero at least at one point of the
domain D}t‘.

The use of the solutions of the problems (4)—(6)
in the optimal algorithm of estimation results in the
following basic equations of the sensitivity theory:

3(§) = (grady ®(¢), 5Y) =

9 —
=L 1h (p* -
! @L Y+&8V[,_, k= 1,K, D

where OY is the vector of variations of the input
parameters, grady ®,(¢) is the set of functions of
sensitivity of the functional to be estimated to these
variations.

The second equality in Eq. (7) is a constructive
transformation of the structure of the scalar product in
Eq. (1) from the space of the state functions into the
space of model parameters. The particular form of the
sensitivity functions derives from equating the
coefficients at the same variations 8Y;, (i=1,N ) in
the right-hand and left-hand sides of the equality or by
differentiating the last expression in Eq. (7) with
respect to 8Y; in RM(DM).

The functions ¢ and ¢; (k =1, N ) are sought at
the unperturbed input data Y, and variations are
estimated by Egs. (7) also in the vicinity of these
values. The values of variations (7) can be calculated,
if at least one component 8Y; is nonzero. The relations
for estimating the variations given by the algorithm
(4)—(7) are of the second order of accuracy in terms of
the variations 0.

Let us note some special cases. If the functional
and model are linear, model parameters do not vary,
and we need to estimate the dependence of the
functionals on only the sources and initial data, then
the inherent structure of the algorithms becomes
simpler. In this case, the operations of linearization in
respect to ¢ are excluded in the conjugate problems (5)
and (6), and there is no need to solve the basic problem
(4). Only those summands remain in Eq. (7) which
relate to the sources and initial data. Depending on the
way of setting the input data on sources of
inhomogeneities, the values of both the functionals
themselves and their variations can be calculated by
these equations. If other parameters vary in addition to
the sources, then the algorithm follows the general
scheme (4)—(7) even for the linear models and
functionals.

Let us exemplify the sensitivity relation (7) for
the model of atmospheric hydrothermodynamics with
allowance made for the hydrological cycle and in
combination with the model of pollutant transport and
transformation? which is accepted as a basic one in the
problems of monitoring and forecasting:
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5O(¢) = gl €801 T} + O] +
t

+ 3 cq+ 4(80cq = 8(B(C)oCa} dD dt +

a=1
4+n
+j S ¢80 _ mdD + Ry(o, ¢, 8Y) +
D i=1
=
+ Ry(9, 0, 8Y) + Ry(9, 9}, 5Y) 0 ®)

where k = 1, K , and Ry, Ry, and R3 have the form

% 4+n m2
Ri(@, 97, 8 = | (BU, 3 €t
Q

i=1

dtn m?  emiin

g
3 Uyd ol —72 X mic Uy, ¢i¢fk%d9 dt,
i=1 i=1

Ry(6, 07, 5Y) =
din Ov; 0Y; 0
=3 cl@[ srad, grad 05+, 5ol FpRAD e+
t

i=1

+ J &r; 0% m dQ dt + J 81, ¢ m dS def],
Q; Sy g

R3(9, ¢, 8Y) = J (G13U, + U%,3G +

Q
+ (U, = U, T8 - TT8U,} m dQ dt —

- j T} 8(Gym + mam, _ dS.
S

Here the notations from Ref. 7 are used: EI¢ =
={0;, G=1,4+n )} ={u,v,T,q,Cqla=1,n), 0, G,
T is the state function of the basic model,
P = (n/m)d, asterisks denote the corresponding
components of the conjugate functions; U, is t

component of the velocity vector U = (11/m) (u, v, O
normal to the boundary Q; of the domain Dy; S; is the
projection of the domain D; on the Earth’s surface; u,
v, and O are the components of velocity vector along
the coordinates «x, y, and o, respectively; T is
temperature; ¢ is the specific humidity; Cq is the
concentration of pollutants; 7 is the number of different
substances; G is geopotential; 1 is a function of
pressure; m is the scale factor of the coordinate system;
dD, dQ, and dS are the volume and area elements; c;
(i=1,4+n ) are the weight coefficients for equalizing
physical dimensions of summands in the integral
identity of model (2); p; and v; are the coefficients of
horizontal and vertical exchange for a substance of
number i; and 7; and T; are the values of turbulent
fluxes at boundaries Q; and S;. The symbol & denotes
variations of the input (relative to the model)
parameters: components of the state vector ¢, U,
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(Oy; = Tddy + 9,01 /m, dp; = (mdY; — ;81 /T, vector
of parameters Y, sources of heat Qr, humidity Qq, and
pollution Q.. The term d(B(C)) describes the variation
of the operator of pollutant transformation due to
variations of the rate constants of reactions included in
this operator. Summands including variations of heat
influxes 8Qr depend on variations of the concentration
of optically active gases. To calculate them, the
complex basic model of hydrothermodynamics
incorporating the radiation block with the model of
pollutant transfer is used.

Let us comment this relation. What is most
important, it demonstrates that all elements of the
models are interrelated; therefore, possible perturbations
of all the input parameters and external sources should
be taken into account to estimate the functionals. The
inner relations of the models are responsible for
solution of the conjugate problems. As a result, only
summands with variations of the input parameters
remain in Eq. (8). The integrals over the boundaries of
the domains D; and D at ¢ =0 take into account the
influence of the boundary conditions and initial data.
For models on a sphere, some of these integrals are
excluded because of the conditions of periodicity.

Three types of integrals are of particular interest,
namely, the integrals including the sources of heat,
humidity, and pollution. The factors near the variations
of the sources are the sensitivity functions. They are the
measures of the direct influence of variations of the
sources on variations of the functional (in linear
problems, the influence of the sources themselves on
the functional). But these summands do not fully
describe the influence of the sources on the functional.
There exists one more indirect contribution described
by the cooperative action of other summands with the
sensitivity functions, whose equations include the
components of the state function. These are, for
example, summands including variations of coefficients
of turbulence, functions of near-ground pressure,
geopotential, pollutant transformation operator, and so
on.

The sensitivity functions of the sources (depending
on the aims of a study and for convenience of
interpretation, they can be named a function of
influence or hazard of the sources, information value,
information content of the monitoring system, etc.) are
defined in the domain D, = D x [0, ¢]. They depend on
the space and time coordinates (x, ) O D; and on five
generalized parameters: the structure of the estimated
functional of the atmospheric quality, Y; configuration
and arrangement of detector zone in D, Y5; time period
of “observations” for estimation, Y3; time interval of
action of the sources, Yy; and the characteristic of the
operation mode of a source or parameter, Ys.

The first three parameters depend on the form of
the functional and the carrier of the weight function in
it; the fourth and fifth ones are determined by the
model parameters. The latter two parameters determine
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the spatiotemporal structure of the sensitivity function.
Other sensitivity functions can be described similarly.

In terms of information, the hazard function for
the functionals determining the atmospheric quality
within the detector zone can be described as follows.
The value of this function at the point (x, ¢) O Dy is
the relative contribution of pollutants emitted by the
source at the point x for the period of its action to the
total pollution (given by the value of the functional) of
the atmosphere in the detector zone for the time of
observation.

The concept of the information content of a
monitoring system for estimation of the functionals (1)
is closely connected with the concept of observability in
the theory of optimal control. The general condition of
observability for the models of the considered class is
that the carriers of the sensitivity functions cover the
ranges of the parameters or sources to be estimated for
which these sensitivity functions are to be determined.
On this basis, the level of values of the sensitivity
function conceptually determines the possibility to
estimate the sought characteristics based on the
observed data by solving the corresponding inverse
problems. The higher is this level, the stronger is the
connection between the parameters to be estimated and
observations, i.e., the functionals, and, consequently,
the better posed is the inverse problem. Hence, it
follows that only parameters that fall into the areas of
sensitivity-observability can be found with certainty.
Inclusion of the sensitivity functions and informative
areas in planning observational experiments can
significantly increase the efficiency of investigations.
Note that the same is true when solving the problem of
the use of observational data in reconstruction of the
spatiotemporal structure of fields with deficient data.

Our experience shows that multifactor estimates of
the information content with a set of models are more
valuable as compared to those made with one factor and
one model. This was distinctly shown, in particular, in
estimates of the levels of anthropogenic impact on the
region of Lake Baikal.? For solution of this problem,
the set of models, including the regional model of
hydrothermodynamics as well as regional and
hemispheric models of pollutant transport in the
atmosphere, was used. It is interesting to note that the
hazard zones of pollution sources calculated by the
sensitivity functions for the atmospheric quality above
Lake Baikal coincided with the zones of influence of
Baikal mesoclimates. The same can be said about
estimates of the information content of observational
data. If the observation system is chosen with regard
for significance of the sensitivity functions, then the
results of reconstruction of fields are acceptable for
practical use even at deficient data,!® because in this
case the models serve as interpolants with a rather wide
range of influence of every observation.

Let us comment the practical implementation of
the algorithms from the viewpoint of computations. The
complexity of the models themselves and algorithms as
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well as bulky information that must be accumulated
and processed send us in search of efficient ways of
obtaining results. The method of parallel computations
has a potential for this. Analysis of the problem as a
whole shows that the modeling process can be
paralleled into several system levels, namely:

1. All basic models can operate in parallel until
the preset moments of their meeting and informational
exchange. Their numerical schemes are constructed
using the identity (2) based on the principles of
splitting and decomposing. Consequently, all the
variety of elementary procedures and splitting stages at
one step can be made in parallel.

2. All conjugate problems for a set of the
functionals (1) can be solved in parallel. Their
computational schemes are identical and differ only in
the algorithms of calculation of the functions (6). In its
turn, the structure of each conjugate problem is
generated by summator analog of Eq.(2) and is
paralleled by analogy with the algorithms of
implementation of the basic models (4).

3. The algorithms of calculation of the sensitivity
functions by Eqgs. (7) and (8) can work independently
and in parallel for all functionals and all model
parameters.

4. Scenarios for different versions of the input
data and hydrometeorological situations can be
calculated in parallel with the hierarchic structure of
parallelizing at the system levels 1-3.

Development of the parallel versions of the basic
models of different system levels is now in progress
with allowance made for the features of computers
available at the supercomputer center of the Institute of
Computational ~ Mathematics and  Mathematical
Geophysics SB RAS.

Numerical experiments

To illustrate the basic statements of this paper, we
have chosen the results of scenario calculations by the
model of pollutant transfer for the functionals having
dual  interpretation. From the viewpoint of
environmental protection, they give the weighted
integral characteristic of the atmospheric quality Fj(¢)
in the detector zones determined by the carrier of the
weight function X,(x, ¢). In terms of monitoring, the
same functionals can be treated as a mathematical
description of the results of observation of the
characteristic Fz(¢) obtained with instruments located
in the detector zone and performing observations in a
preset regime. The results of observation are summed
up with the weight determined by the values of
function ¥p(x, £) =0. In this sense, numerical
experiments imitate the actions of an observer.

For simplicity, it was taken Fp(¢) =¢ in all
scenarios in order to avoid solution of the direct
problem and to estimate the information content
relative to the pollution sources only. The difference
between scenarios was in setting different detector
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zones and weight functions in the functionals. Scenarios
for weightless passive pollutants were considered.

The first example presents the calculations on
imitation and interpretation of the observational
experiment conducted by researchers of the Institute of
Atmospheric  Physics RAS. The essence of this
experiment was as follows. A railway train including a
car-laboratory  capable to measure atmospheric
characteristics went along the Moscow—Vladivostok
main line on a certain schedule. Our task was to
estimate the information content of these measurements.
In other words, we had to find pollution sources
contributing to the results of observations.

To formulate the task mathematically, we had to
set the structure of the observational functional and to
make calculations for the conjugate problem for this
functional. We used the hemispheric model of pollutant
transport in the hybrid “p-sigma” coordinate system
(this model was one of the models described in Refs. 7
and 11). The field experiment was conducted in August
12-20, 1996. The hydrometeorological data for the
Northern Hemisphere for that period were borrowed
from the Reanalysis NCEP/NCAR database.!2 The
spatiotemporal structure of the hydrometeorological
fields with the time step of 30 minutes in the hybrid
coordinate system was reconstructed with the use of the
procedures described in Ref. 13. The weight function in
the functional was assumed to be a nonzero constant
along the phase trajectory of the train movement. The
coordinates of its spatiotemporal carrier were set in
accordance with the train schedule. So, the functional
was a sum amount of pollutants measured for the whole
time of movement along the trajectory.

The calculation was made in the regime of inverse
modeling, i.e., the sources of inhomogeneities (7)
generated by the functional of observations in the
conjugate problem moved in the backward direction of
time (relative to the train movement) from Vladivostok
to Moscow. The time interval, in which the problem
was being solved, was somewhat wider (from 20 to 5 of
August in the backward direction) than the period of
observations. This was needed to determine how long
the sensitivity functions remain significant beyond the
observation interval. In other words, we wanted to
know how strongly events happened prior to the
experiment can affect the functional.

To analyze variations of the sensitivity functions
in space and time, the calculated results were visualized
as computer animation. They pictorially showed the
marked variability of the sensitivity functions in
response to the variability of atmospheric hydrodynamic
characteristics. It turned out that these functions
retained their information content from two to four
days beyond the period of observations. Consequently,
events happened 1-100 hours prior to observations in
the areas with significant levels of the sensitivity
functions can contribute to the values of the observed
parameters. The calculation gives the relative levels of
significance for every area regardless of the power of
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pollution sources located in it. To obtain the absolute
contribution of each source, we must know its emission
volume.

Figure 1 shows the timely integrated function of
the information content relative to pollution sources
which can be located at two levels: on the Earth’s
surface and in the stratosphere at the height of
20 mbar. The 3D field whose 2D cross sections are
shown in Fig. 1 was normalized to maximum value.
Near the Earth’s surface, areas adjacent to the main
line or situated at the distance of 100—200 km from it
have rather high level of significance.

AT A e =
I e e e
cococeoeea
Lhn e s G0 Lo NN — =

== = = = O
e e e e e
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ChUn s G L) NN = —

of

Fig. 1. Function information content for moving
observation system relative to ground-based sources (top
panel) and relative to sources located at 20 mb level (bottom
panel).

The second example differs from the first one in
only the type of the observer’s operating mode. It was
supposed that a network of stationary stations was
conducting observations along the path at the same
time, i.e., measurements were being conducted along the
whole path for the entire period of observations, and
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the results of these measurements were summed up. The
computer animations have shown that in this case the
variability manifests itself in a different way. Figure 2
shows the same characteristics as Fig. 1. Similarly, the
field is normalized to its maximum value.

T GhiE iR i i
o s e e
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hithds o NN — —

— = = N = e =
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Fig. 2. The same as in Fig. 1 but for stationary observation
system.

Conclusions

Comparison of experimental results obtained for
stationary and moving observation systems under the
same conditions shows that the sensitivity functions in
their dynamics differently response to variability of
atmospheric circulation. In the case of the moving
system, the effect like a traveling wave in space in
accordance with the passage of the carrier of the weight
function along the phase trajectory manifested itself in
the sensitivity functions.

The information content depends on the duration
of measurements. The stationary system proved to be
more informative as a whole because of longer periods
of individual observations and their synchronism. In the
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both cases, the effect of the near zone predominates,
although the influence of sources located at the distance
about 500 km from the path remains significant. This
means that some specific substances emitted by far
sources (providing they are absent in near emission
zones) can be identified with a certain degree of
confidence by the measurements with time lag between
the moments of emission and measurement about 5-7
days in the case of the stationary system and 2—4 days
in the case of the moving system. These circumstances
should be taken into account when planning phase
trajectories for observations. Consequently, in the
absence of a stationary monitoring systems, moving
laboratories equipped for measuring a wide spectrum of
substances can identify emissions from sources located
within the range of sensitivity—observability along the
phase trajectory of the moving laboratory. This is of
prime importance in solving the problem of ecological
safety of territories, especially, in the absence of
stationary monitoring systems.

Mathematical models are necessary components
of a monitoring systems, because they help to increase
the information content of observations, combine
dissimilar and nonsynchronous information, and obtain
a comprehensive idea on evolution of the observed
situation.
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