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In this paper, intensities of an ensemble of point stationary sources of atmospheric pollutants are
determined by values of pollutant concentration measured in several test points. To find the sought
characteristics, the method of maximal likelihood was applied. The likelihood function was plotted on the

base of results obtained earlier in the authors’

study of atmospheric pollutants’ concentration. The

calculations were performed for a flat underlying surface situated at the latitude of Novosibirsk city. The
values of pollutant concentration obtained in solving the “direct” propagation problem were taken as the
“measured values of concentration. According to calculations, this approach turns to be efficient for a

rather complicated “inverse“ problem.

Introduction

Let a number of point stationary sources act in a
certain domain of the space. To describe aerosol
propagation from the sources in the boundary layer of
the atmosphere, we’ll use a model based on the semi-
empirical equations®
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where C and o2 are mathematical expectation of
concentration and its dispersion, respectively, U, are
the components of mathematical expectation of the
field of wind velocity, K, are the components of the
tensor of turbulent diffusion coefficients, Q describes

the sources of admixture, b? is kinetic energy of
turbulence, € is its dissipation rate, R is the empirical
constant.8

Let the sources’ coordinates x;, y;, z;, (i =1, m) be
known. Let the intensity of each source be assigned the
form q; = A; qo where qq is a unity value of intensity, A;
are dimensionless constants. Let the observation points
be situated within the chosen area at the points

X, ¥j» zj, (G =1, n) where average values of harmful
admixtures’ concentration C,y; are detected. As a rule,
measurements of admixture concentration are realized
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by averaging of its instant values C(¢) by a certain
finite time interval T
T
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Owing to this, C,, is a random value as a function of a
random variable. It is well-known that this estimate is

unbiased and its dispersion is (see, for instance,
Ref. 10)
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where 7(¢) is the normalized correlation function of
concentration pulsation. As T - o, sample values C,,

tend to mathematical expectation of concentration C,
and dispersion Giv tends to zero.
Solving Eq. (1), one can obtain mathematical

expectations C,,;, namely, values of C, by assuming

m
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where 8(...) is the Dirac delta. The equation (1) is
linear. So one write

5]‘: z )\i C_ij’ (5)
where C;; are solutions of the equation (1) for

O =qp d(x — x;) 3y — y;) 8(z — z;) (the solutions are
taken in the jth point). Similarly we obtain that
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where 012]. are solutions of the equation (2) which are
taken at the jth point and correspond to the values C if
obtained by Eq. (1).

This paper deals with the problem of determining
weight coefficients A;, i.e., determining intensity of
pollutant sources by observation data on concentration
and additional information obtained from the solution
of the equations (1) and (2) for sources of unity
intensity. The problem that was formulated above
belongs to the class of “inverse“ problems. Classical
approaches to its solution are based on equations
adjoint to the semi-empirical equation of turbulent
diffusion (1).6 Below we consider a variant of the
solution of this problem. It uses the statistical nature of
the process of pollutant propagation in the atmosphere.

Methods

To determine the coefficients A;, which also are
random values in the general case, we apply the method
of maximal likelihood.10 Let us introduce an a priori
probability density of the estimated parameters p,,(A;).
It is an unknown value. Let the probability density of
the observed mean concentration values is p(Cyy& ;)
for fixed parameters A;. By the multiplication theorem,
the joint probability density of C,y; and A; is

POEC,y) = pprA) p(CoyjR ) = p(Cyy) p(NDC,yp).

Owing to this, we obtain the classical formula for the
conditional probability density A; for a given sample of
the values C,y;
PprA) p(Cyyi A )
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This value is the posterior conditional probability
density p(\OCyyj) = pps(Ay). The conditional probability
density p(C,y;® ;) considered as a function of A; is said
to be the likelihood function — p(C,y@ ;) =
= L()\;). If the posterior probability density is of a
rather “good“ form, namely, if it is unimodal and
almost symmetric, it is natural to seek an estimate of
the parameters A; that has minimal posterior variance.
The set of values that provides the maximal value of
the posterior probability density for given C,y; is taken
as an estimate for A; in the method of maximal
likelihood. In some cases, it seems to be convenient to
seek solutions of the system of equations!0
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which explicitly depend on the sample C,y;.

Now let us begin to construct the likelihood
function L(A;). For the considered problem, it is
natural to assume that every pairs of values C,y;, and
Cayj, are statistically independent for jj #j, and
pi(CayjA ) # 0. Then
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where p;(C,,;& ;) is the probability density for the
observation of the mean concentration value C,y; for
fixed A; at the jth point.

Let us take Eq. (5) as a parametric estimate of the
mathematical expectation of C,y;. For the parametric
estimation of dispersion of C,y;, let us suppose that the
correlation function in Eq. (4) has the exponential
form 7(¢) = exp (-00t0,/1.) where T. is the Eulerian
temporal scale of pollutant concentration pulsation.
Then
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The probability density of the random value C,y; is
obtained theoretically and verified experimentally in
Ref. 1:
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where erf(...) is the error integral, B; is the second
parameter of the probability density function. It is

connected with the variance waj by the relation
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In Eq. (10), the term with the delta function describes
the probability to observe zero values of C,yj, so it can
be omitted for the considered problem.

Thus, the function of maximal likelihood can be
assigned if and only if we know mathematical
expectations of concentration Cuvj and variance Givj at
every jth point and the Eulerian temporal scale T,. Let
us consider the results of some of our numerical
experiments.

Results of calculations
and their analysis

The calculations were performed for a plane
underlying surface situated at the latitude of
Novosibirsk. Thermal stratification of the atmosphere
corresponded to conditions typical for summer at 15 h
of local time in the Western-Siberian region. Thermal
properties of the underlying surface were taken as
characteristic for forest steppe. The calculations were
performed within a rectangle parallelepiped with base
x =34 by y =42 km. The y axis was directed to the
north. The vertical coordinate was bounded by the
height of the boundary layer of the atmosphere. The
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Eulerian temporal scale was taken to be T, = 100 s;
T = 30 min.

Mean values of wind velocity components and
temperature were calculated by the numerical—
analytical technique.5 For this purpose, wind velocity
was taken to be 2 m /s at the height of 10 m. The wind
blew in the direction of the x axis. Cloudiness was
supposed to be absent. The obtained fields of wind
velocity and temperature were used to assign K, b2,
and €. These characteristics, which are necessary for the
solutions of the equations (1) and (2), were determined
by the algebraic model described in Ref. 9. Here we
used the hypothesis that K, are proportional to the
corresponding components of the Reynolds viscous
stress tensor. Experimental verification of the
hypothesis was found earlier? in field conditions. The
equations (1) and (2) were solved by numerical
methods.” In the boundary condition for concentration
on the wunderlying surface, the rate of particles’
sedimentation was assumed to be 20072 m/s. The
boundary condition for variance on the underlying
surface was taken in accordance with Ref. 3.
Concentration values obtained in such a way were
considered as “measured,“ and then they were used to
construct the likelihood function. The maximum values
of L(A\;)) and their corresponding values of A; were
found by exhaustion.

In the first series of calculations, intensities of two
sources were reconstructed. The scheme of their
location and “measurement“ points are presented in
Fig. 1a. The results of calculations, together with the
coordinates of the sources and “measurement points,
are presented in Table 1. The height of the points was
always taken to be 25 m. In the first variant of
calculations, intensity of the second source was varied.
As seen from the data of Table 1, intensities of the two
sources are reconstructed satisfactorily by four points
up to the moment when their intensities begin to differ
almost by three orders of magnitude. In the second
variant of calculations, the height of the second source
was decreased by two folds. The results of intensity
reconstruction appear to be similar. In the third
variant, the number of “measurement points was
reduced to three. One can see that the decrease of
intensity of the second source by almost two orders of
magnitude also leads to quite satisfactory results. The
data of the fourth variant of calculations demonstrate
that not bad results can be obtained even with two
“measurement” points. The results of the fifth variant
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of calculations demonstrate that the increase of the
distance between the sources leads to satisfactory
coincidence of given and reconstructed intensities.
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Fig. 1. Arrangement of pollutant sources (crosshairs) and

points of concentration measurements (circles) within the
calculation domain.

Table 1. Results of reconstruction of intensities for two sources (the first series of calculations)

Variant of |Coordinates of the sources| Distance between | Given /reconstructed intensity of Used points of concentration
calculations x, y (km); z (m) the sources along the sources (conv. units) “measurement”
first | second the horizontal, km first | second 1 | 2 | 3 | 4
1ot /10" 10'1 /10" + + + +
10! /10! 1010,/1010 + + + +
First 6, 20, 50 6, 22, 50 2 1011 /1011 10°,/109 + + + +
101 /10! 108 /4- 108 + + + +
oMot 107/410° o o o o
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Variant of |Coordinates of the sources| Distance between | Given /reconstructed intensity of Used points of concentration
calculations x, y (km); z (m) the sources along the sources (conv. units) “measurement”
first | second the horizontal, km first | second 1 | 2 | 3 | 4
10 /10! 101071010 + + + +
10t /101 6-109,/6- 109 + + + +
Second 6, 20, 50 6, 22, 25 2 101t /101 4-109/3- 109 + + + +
101 /10! 2-109,/3-10° + + + +
101t /101 109 /5- 108 + + + +
e T 2T L 1010/1010" "7 + + T + T -
Third 6, 20, 50 6, 22, 50 2 101t /101 8-109,/8- 109 + + + -
10t /101 6-109,/5- 109 + + + -
Fourth | 6,20,50 6,22,50 2 ot ol 10101010~~~ 77 . T . -
10t /101 8-109,/7-109 + + - -
Fifth | 6,18,50  6,24,50 6 1010,/9-109 1010 /1010~~~ + T T P v
6, 18, 50 6, 22, 50 4 1010 /1010 1010 /1010 + + + +

Table 2. Results of reconstruction of intensities for five sources (the second series of calculations)

Given /reconstructed intensity of the sources (conv. units)

Used points of concentration “measurement”

First Second Third | Fourth | Fifth 1 I 2 3 4 5 6 7 8
5-1010,/5.1010 5.10'0/5-1010 5.10'°/5-10'0 5.1010/5-10'0 5-10'0/5.-1010 + + + + + + + +
5-1010 /5.1010 5.10'0 /5. 1010 5.10'0,/5.10'0 5.1010/5.10'0 5.10%0,/5.1010 + + + + + + + -
5-1019,/5.1010 5.1010 /5.1010 5.101°/5.100 5.1010,/5.10'0 5.10'0/5.1010 + + + + + + - -
5-1010,/5-10> 5-10'0/5-10° 5-1010,/4-10'° 5.1010,/8- 1010 5.1010,/9-1010 + + + + + - - -
5-1010,/5.1010 5.100 /4. 1010 5.10'0,/8-10'0 5.1010,/8-10'1 5-10'0,/9- 1011  + + + + - - - -
5-1010 /4.1010 5.10'0 /10! 5.10'0,2.10'0 5.1010,2.10'0 5.10%0,2.1010 + + + - - - - -

Table 3. Results of reconstruction of intensities for five sources (the third series of calculations)
Given /reconstructed intensity of the sources (conv. units) Used points of concentration “measurement”

First Second Third | Fourth | Fifth 1 2 3 4 5 6 7
5-1010 /5.1010 5.10'0 /5. 1010 5.10'0,/5.10'0 5.10'0/5.1010 5.10'0,/5.-1010  + + + + + + -
5-1019,/3.1010 5.1010 /5.1010 5.101°/5-10'0 5.10'0/5.-1010 5.1010,/5.1010  + + + + + - -
5-1010,/3- 1010 5.1010 /5.1010 5.101°/5-1010 5-10'0/5-1010 5.1010,/5-1010  + + + + - - -
5-1010,/3- 1010 5.10'0/5-1010 5-101°,/5-10'0 5-10'0/5-1010 5.1010,/5-1010  + + + - - - -
5-1010/3.1010 5.10'°,/9-10% 5-10'0,/5-10'0 5.10'0/5.1010 5.10'0,/4.1010  + + - - - - -

5-1010 /1011 5-1010 /101 5-1010,/1011  5.1010 /4. 1010 5.1010 /101! + - - - - - -
5-1010/5.1010 3-1010,/3: 1010~ 1010,/1010° "~ '8.109/8-10°  5-109/5-109  +  +  + +  +  + o+
5-1010,/5.1010 3.1010,/3.1010 1010 ,/1010 8-10°,/8-10°  5-109/5-109 + + + + + + -
5-1010,/5.1010 3.1010,/2.1010 1010 ,/8.- 109 8-109,/10° 5-10%/6- 108 + + + + + - -
5-1010 /5.1010 3.1010 /2. 1010 10'0,/8. 109 8-109,/2-109  5-109/5-108 + + + + - - -

The second series of calculations was performed for
five sources arranged in a line. They simulated a linear
source of a pollutant (see Fig. 1b). The number of
“measurement” points by which the intensities were
reconstructed was up to eight. They were also placed in
a line. The reconstructed values of intensity are presented
in Table 2. Good results are obtained in the case when
we use from six to eight points. For less numbers of
points, significant discrepancy with the given intensities
is observed.

The third series of calculations was performed for
five sources arranged irregularly and seven or less
“measurement” points which were also arranged
irregularly (see Fig. 1c¢). First, intensities of all the
sources were assumed to be similar and the number of
the “measurement® points varied. The data presented in
Table 3 demonstrate that quite satisfactory results of

intensity reconstruction for five sources can be obtained
even with two “measurement” points. Other data
presented in Table 3 correspond to the variant when
intensities of an ensemble of five sources are different
within the limits of an order of magnitude. We see that
satisfactory results are obtained with five and more
measurement points.

Conclusions

Thus, the results of calculations demonstrate that
the method of maximal likelihood is efficient for the
rather complicated “inverse“ problem of reconstructing
intensities of an ensemble of atmospheric pollutant
sources. In the general case, as it is demonstrated by
the above-mentioned results, it is necessary to optimize
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the number and arrangement of concentration
monitoring points in accordance with the number of the
sources and expected dispersion of intensities. The
necessity to know not only pollutant concentration but
also its variance is a non-trivial and complicating
condition. Besides, it is important to match the period
of concentration averaging with the Eulerian temporal
scale of concentration pulsation. One can expect that
the approach proposed in this paper can successfully
complete classical (based on solving adjoint equations)
methods of solving "inverse" problems.
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