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In relation to a general problem of detection and ranging of ground-based 
sources from satellites, modern approaches to a solution of overdetermined set of 
linear equations are discussed for the case of random errors in determination of 
their left and right sides.  The singular expansion algorithm is widely used in these 
approaches and the total least-squares method (TLSM) that implements this 
algorithm and linearizes the Frobenius norm of an extended matrix used to 
compensate for the errors.  Computational aspects of the TLSM inadequately 
covered in Russian literature and field of its applications are outlined. 

 
1. The procedure for the expansion of a linear 

operator in singular numbers, called the SVD 
algorithm,1 is widely used in signal processing.1$4 It 
ensures higher accuracy and robustness as compared 
with all the other approaches to a solution of least-
squares method (LSM) problems.4  The SVD algorithm 
is especially efficient in the cases in which errors are 
present not only in the right side of equations but also 
in their left side and the problem is being solved not by 
the classical method but by the total or extended least-
squares method (TLSM).5  It is the case which is 
considered in the present paper in connection with 
detection and ranging of ground-based or 
circumterrestrial radiation sources with the NAVSTAR 
or GLONASS satellite system.6 

Here, we consider a point-size omnidirectional 
source of light pulses, but our consideration also can be 
extended to a wider class of problems of detection and 
ranging of sufficiently high-power radiation sources 
(not only optical ones) by the differential$ ranging 
scheme. 

In the differential-ranging scheme, the source 
coordinates (x, y, z) are determined from the 
differences fik of path lengths from the source to the 
space vehicles (SVs) that recorded a signal: 
 
fik ≡ fik(x, y, z) = ri$ rk,  k, i = 1, 2, ..., N,  
 

rl = (xl $ x)2 + (yl $ y)2 + (zl $ z)2, 
 

l = 1, 2, ..., N, (1) 
 
where (xl, yl, zl) are the coordinates of the lth SV.  In 
the experiment, one measured not fik, but the time 
delays Δtik connected with them by the relation 
 
cΔtik ≈ fik. (2) 
 

The delays can be measured by one of the two ways: 
a) by fixing the moments of signal recording by the ith 
and kth SVs separately followed by calculation of 
Δtik = ti $ tk or b) by joint processing of recorded 
signal copies and finding the temporal shift at which 
the copies superimpose in the best way.  The latter can 
be realized with the use of a correlator, adaptive filter, 
or another device for comparing two weakly disturbed, 
temporally shifted, and scaled copies of the same signal 
(see, for instance, Ref. 7) 
 
s1(t) = s(t) + n1(t), s2(t) = as(t $ τ) + n2(t),      
 
where τ is the time delay, a is the scaling factor, n1(t) 
and n2(t) are noisy processes.  The first approach yields 
m = N $ 1 linearly and statistically independent 
random variables Δtik (estimation based on noisy data is 
always a random variable), and in the second approach, 
all variables Δtik are statistically independent, i.e., 
m = N(N $ 1)/2. 

Let us formalize the above-described scheme for 
convenient further consideration.  Introducing a single-
parameter enumeration of all the pairs of indices (i, k) 
to which the statistically independent Δtik correspond, 
we write down initial equations (2) of the differential-
ranging scheme in the form 
 

f ~$ Δ, (3) 

 
where f = [f1,...,fm]T and Δ = [Δ1,...,Δm]T are the m×1 
column vectors with elements fl = fik and Δl = cΔik, 
l = 1,..., m respectively; l is the index of the pair 
(i, k); T denotes matrix transposition. 

The vector f is a nonlinear function of the 
parameter vector 
 

θ = [x, y, z]T,  (4) 
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i.e., f ≡ f(θ).  Using the Taylor expansion 
f = f (θ0) + A(θ $ θ0) + ... 
 
and considering two terms, we obtain the linearized 
version of equation (3) 
 

A(0) x(0) ~$ b(0), (5) 
 

with the help of which θ is estimated.  Here, 
 

x(0) = θ $ θ0,   b(0) = Δ $ f(θ0), (6) 
 

the m×3 matrix A is the Jacobi matrix 

A = df/dθ⏐θ = θ0 whose elements are functionals 
 

A
(0)
ik  = 

∂fi
∂xk θ = θ0

,   i = 1,  ..., m,  k = 1, 2, 3, (7) 

 

x1 = x,  x2 = y,   x3 = z, 
 

θ0 are the nominal values of θ. 
The nominal value of θ0 initially chosen for  

a priori reason is then adjusted by calculations.   

The estimation θ̂(j$1) of the vector θ obtained at the 
(j $ 1)th iteration is used as θ0 at the following jth 
iteration.  Here, 
 

A( j) x(j) $∼ b( j), (8) 
 

x( j) = θ $ θ̂( j$1),   b( j) = Δ $ f(θ( j$1)),  

A
( j)
ik  = 

∂fi
∂xk θ = θ

( j$1)
, (9) 

 

i = 1,  ...,  m,  k = 1, 2, 3. 
 

2. In the typical case m > 3, the set of equations 
(3) and, consequently, (5) and (8) are overdetermined 
and, generally speaking, incompatible.  The latter 
circumstance is expressed in the equations by the sign 
of approximate equality.  They have no solution in the 
common sense but admit estimation of x optimal 
against one or another criterion.  As is well-known,3 

the LSM estimation x̂ of the parameter vector x such 
that 
 

Ax ~$ b (10a) 
 

or 
 

[A⏐b]⎣
⎡

⎦
⎤x

$1  $∼ 0 (10b) 

 

is the solution of the normal equations 
 

`Š A x = `Š b. (11) 
 

The sign œ$∼œ is replaced here by œ=œ because 

multiplication by AT made the components of the data 
vector b orthogonal to the space of columns A to 
vanish.  This transformed the system of equations (10) 
into a compatible one.  For the m×n matrix A of total  

rank r = rank(A) = n, the matrix ATA is invertible; 
moreover, there exists a unique solution of Eq. (11) 
 

x̂ = (`Š A)$1 `Š b, (12) 
 

which is just the LSM estimation of x. 
If r < n, unambiguous solution of Eq. (11) can be 

obtained by imposing additional requirement of norm 
minimization on x.  The estimation satisfying the 
requirement of LSM and having the minimum 
Euclidean norm as compared with all the other 
estimations satisfying this requirement (MNLSM) is 
expressed by the formula 
 

x̂ = `+ b = (`Š A)+ `Š b, (13) 
 

where A+ is the generalized inverse or pseudoinverse8 
matrix corresponding to A. 

The explicit expression for A+ is easy to find by 
SVD calculation of the matrix A 
 

A = UΣVT = ∑
i=1

n

 λi ui v i
T,   λ1 ≥ λ2 ≥ ... ≥ λn, (14) 

 

where U and V are orthogonal matrices, Σ is a diagonal 
matrix, λi are singular numbers, and ui and vi are left 
and right singular vectors of A.  The SVD exists for an 
arbitrary matrix and is unique.  There are well-
developed algorithms for its calculation (see, for 
instance, Ref. 8).  The formula for SVD of a 
generalized inverse matrix 
 

`+ = ∑
i=1

r

 λ i
$1

 vi u i
T. (15) 

 

follows immediately from Eq. (14).  Substitution of 
Eq. (15) into Eq. (13) yields the solution of problem 
(10) in the form 
 

x̂ = ∑
i=1

r

 λ i
$1(u i

T
bi)vi . (16) 

 

Here, ui
Tbi is the scalar product of the vectors ui  

and bi and r ≤ n is the rank of the matrix A 
corresponding to the number of nonzero λi in Eq. (14).  
For r = n, Eqs. (15) and (12) coincide and 
 

A+ = (AT A)$1 AT. (17) 
 
This is easy to verify by substituting singular 
expansions of A and AT into Eq. (16) and taking into 
account the equalities ATA=VΣ$2VT, (ATA)$1= 
=VΣ$2VT, (ATA)$1AT= VΣ$1UT. 

3. The equations (10) and (11) are not 
equivalent.  The passage from Eq. (10) to Eq. (11) is 
unambiguous, but the converse is not true.  The sense 
of this passage is to correct the data vector b with a 
certain correction vector r added to it.  The vector r 
is such that the equations 
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Ax = b + r,   b + r ∈ range(A) (18) 
 

become compatible because the vector b + r lies in the 
space of columns of the matrix A.  The requirement of 
Euclidean norm minimization is imposed on r, i.e., the 
solution of the system of equations (18) is an LSM 
solution of the system of equations (10) only if the 
condition 
 

  ⏐⏐ r  ⏐⏐ 2= ∑
i=1

m

 r2i = min (19) 

 

is satisfied simultaneously with Eq. (18). 
It is easy to see that 

 

r = A x̂ $ b = (AA+ $ I)b = (UUT $ I)b. (19a) 
 

The incompatibility of the system of equations 
(10) is often caused by œnoisyB right and left sides of 
equation (10).  Errors in modeling manifesting 
themselves through inaccurate assignment of elements 
of the matrix A play an important part together with 
measurement errors being the source of distortions of 
the elements of b.  Allowance for this circumstance 
leads to generalization of the classical least-squares 
method, namely, to the total or extended LSM 
(TLSM).2,4 

According to TLSM, the initial equation (10) is 
replaced by the approximation 
 
(A + E)x = b + r (20a) 
 
or equivalently 
 
(B + D)z = 0, (20b) 
 
where 
 

B = [A �
�
�

 b], D = [E �
�
�

 r] = [dij],  z = ⎣
⎡

⎦
⎤x

$1 .  

 

Here, normalization that makes the elements of the 
vectors b and x dimensionless is assumed.  The 
correction terms E and r are subject to the conditions 
that the vector b + r belongs to the space of columns of 
the matrix A + E: 
 
(b + r) ∈ range(A + E), (21a) 
 

and that the Frobenius norm of the matrix D is 
minimum:4 
 

⎜⎜D⎜⎜F
2
 = traceDDT = 

⎝
⎛

⎠
⎞∑

i

  ∑
j

 d2
ij  = min.  (21b) 

The problem of the optimal approximation of 
initial incompatible system (10) by compatible system 
(20) with the minimum Frobenius norm (the sum of all 
elements squared) of the correction matrix D is solved 
with the help of equations (21). 

The equations (20b) admit a solution only if the 
rank of the matrix B + D is less than the number of its 
columns n + 1 at least by unity.  According to the well-
known Eckart$Young theorem (see, for instance, 
Ref. 9), the matrix B1 obtained from the singular 
expansion of B 
 

B = ∑
i=0

n+1

 σi ξi η i
T,   σ1 ≥ σ2 ≥ ... ≥ σn ≥σn+1, (22) 

 

neglecting the last term σn+1 ξn+1 ηn+1
T  

 

B1 = ∑
i=0

n

 σi ξi η i
T,   σ1 ≥ σ2 ≥ ... ≥ σn  (23a) 

 

is the closest to B from the viewpoint of the Frobenius 
norm among all the matrices of rank n.  Moreover, 
 

⎜⎜D⎜⎜F
2
 = ⎜⎜B $ B1⎜⎜F

2 = 
 

= trace{σ 2
n+1ξn+1 η

T
n+1ηn+1 ξ

T
n+1} = σ 2

n+1. (23b) 
 

If the rank of B1 is less than n (e.g., equals r < n), 
then 
 

B1 = ∑
i=0

r

 σi ξi η i
T,   σ1 ≥ σ2 ≥ ... ≥ σr , (24a) 

 

and 
 

⎜⎜D⎜⎜F
2 = ∑

i=1

n$r

 σ2
i. (24b) 

 

A solution of equation (20b) should be the 
(n + 1)×1 vector orthogonal to the space of columns of 
B1 and hence parallel to the vector ηn+1.  Let us 
represent the latter as 
 

ηC + 1 = [η′n+1
T ⏐ηC + 1, C + 1 ]T. (25) 

 
Then 
 

⎣
⎡

⎦
⎤x

$1  = $ 
1

ηC + 1, C + 1
 ⎣
⎡

⎦
⎤η′

ηC + 1, C + 1
 

 
and hence 
 

x̂TLSM = $ 
1

ηC + 1, C + 1
 ηn+1′  ≡ 

 

= $ 
1

ηC + 1, C + 1
 

⎣
⎢
⎡

⎦
⎥
⎤

ηC + 1, 1

 ηC + 1, 2

 . . . . . 
ηC + 1, n

 

.   (26a) 

 
This is the TLSM solution obtained by the 

straightforward application of the SVD algorithm.  In 
more general case of multiple singular numbers 
σr+1 = ... = σn+1 it can be written in the form 
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x̂TLSM = $ 
1
α ∑

k=r+1

n+1

 ηk,C + 1 ηk′  α = ∑
k=r+1

n+1

 ⏐ηk,C + 1⏐2. (26b) 

 
Here, ηk′ is the vector obtained from ηk by neglecting 

the last element and retaining the first n elements. 
4. The TLSM solution (26) can be written in 

another form similar to Eq. (15) or (12) in order to 
compare it with the LSM solution.  A straightforward 

substitution of B[A �
�
�

 B] and ηi = [η′iT �
�
�

 ηi,n+1]T into the 

equation for the eigenvalues 
 

BTBηi = σ2
iηi,   i = r + 1, ..., n + 1, 

 

easily demonstrates that 
 

ηi′ = $ηi,n+1(AT A $ σ2
iI)+ ATb. 

 

With allowance for Eq. (26b), it follows that 
 

x̂TLSM = $ 
1
α ∑

k=r+1

n+1

 ⏐ηk,C + 1⏐2(AT A $ σ2
iI)+ ATb. 

 

If all σ2
i, i = r + 1,..., n + 1, can be considered equal to 

a certain σ ∈ (σn+1, σn+1 + ε) where ε is the error in 
estimation of singular numbers, then 
 

x̂TLSM = (AT A $ σ2 I)+ AT b, (27) 
 

which is close to Eq. (13).  Let us suppose that none of 
the λi coincides with σ.  Then (ATA $ σ2I)+ = 
= (ATA $ σ2I)$1 and, taking into account the equality 

AT = ∑
 

r

 λiviu
T
i , we have 

 (AT A $ σ2 I)+ AT  = ∑
i=1

r

  
λi

λ2
i $ σ2

 vi u
T
i . 

 

In this case, Eq. (27) takes the form 
 

x̂TLSM = ∑
i=1

r

 
1
λi

 
1

1 $ σ2/λ2
i

 (uT
ib)vi, (28) 

 

which is close to Eq. (16). 
For r = n, the criterion of estimation optimization 

(21b) used in the TLSM can be written in the form 
 

  ⏐⏐ Ax $ b  ⏐⏐ 2

  ⏐⏐ x  ⏐⏐ 2
2 + 1

 = min, (29a) 

 

which is more convenient to compare the LSM and  
TLSM estimations.  The conditions (29a) and (21a) are 
equivalent if r = n.  To verify this, let us write down 
Eq. (29a) in the following way: 
 

⎝
⎜
⎛

⎠
⎟
⎞max

z
 
  ⏐⏐ Dz  ⏐⏐ 2

2

  ⏐⏐ x  ⏐⏐ 2
2  = min. (29b) 

 

However, the left side of Eq. (29b) is nothing but the 
operator norm of the m×(n + 1) matrix D coinciding 
with its Frobenius norm for r = n.  This demonstrates 
the equivalence of conditions (21b) and (29a).  The 
requirement that the vector z should belong to the 
space of matrix D columns following from Eq. (20) and 
equivalent to the maximization of the parameter 

  ⏐⏐ Dz  ⏐⏐ 2
2/  ⏐⏐ z  ⏐⏐ 2 is taken into account when going 

from Eq. (29a) to Eq. (29b).  The TLSM criterion 
(29a) differs from LSM criterion (19) by an additional 

factor 1/   ⏐⏐ x  ⏐⏐ 2
2 + 1 having a simple geometric 

interpretation: it corresponds to the cosine of the angle 
between the discperancy vector r and the direction of 
the normal to the nearest subspace 
 

⎩
⎨⎧

⎭
⎬⎫⎣

⎡
⎦
⎤a

b
:a ∈ Rn,  b ∈ R,   b = xTa . 

 
5. Detection and ranging of ground-based radiation 

sources with a satellite informational measuring system 
(IMS) leads to many problems of statistical estimation 
most efficiently solved by the SVD algorithm.  They are 
smoothing and extrapolation of signals by a finite number 
of noisy sample data,10 estimation of the system pulse 
response by discrete deconvolution,5 estimation of the 
position of a few simultaneously radiating sources whose 
signals are superposed at the inputs of a sensor system of 
the satellite IMS,3 estimation of the source coordinates 
from the data of observations through a cloud layer 
distorting the propagation path of signals,11 etc.  
Paraphrasing the title of the book,4 one can say that 
TLSM problems formulated usually as an overdetermined 
system of equations with a large number of rows or/and 
columns with noisy left (coefficients of equations) and 
right (measurement data) sides are the main fields of 
SVD algorithm application. 

Accuracy and robustness of the TLSM solution of 
such problems is better or at least no worse than those 
of the LSM solution (with the exception of rare 
œpathologyB).  Their advantage as compared with the 
LSM solution increases with the decrease of the matrix 
conditional number and compatibility of the system. 

A separate paper will be devoted to concrete results 
of SVD-algorithm and TLS-method application to solving 
some problems of statistical estimation for source 
detection and ranging.  Preliminary data of an experiment 
performed for this purpose were published in Ref. 12. 
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