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An analysis of an interferometer has been performed based on recording of a 

hologram of an amplitude scatterer image focused according to the Gabor scheme 

with the Kepler telescope. It has been shown theoretically and experimentally that 

when performing the spatial filtration of a diffraction field, an interferogram 

characterizing spherical aberrations of a controllable object is formed in the 

hologram plane. 

 

In Ref. 1 it was shown that the double-exposure 
recording of a hologram of a mat screen image focused 
with the Kepler telescope and produced by the off-axis 
reference wave at the stage of its reconstruction leads 
to the formation of shear interferograms in fringes of 
infinite width produced by diffusely scattered light 
fields. Each particular speckle in the hologram plane 
contains the information about aberrations of an optical 
system. When performing the spatial filtration of the 
diffraction field in the hologram plane, the interference 
pattern, which characterizes aberrations, is localized in 
the far diffraction zone. In its turn, the speckle field in 
this plane is modulated by a phase function determining 
the wave aberrations of the optical system in the 
channel of the reference wave formation and also in the 
channel where the radiation is formed used to 
illuminate the mat screen. The interference pattern 
characterizing these aberrations is localized in the 
hologram plane. To detect the interference pattern, it is 
necessary to perform spatial filtration of the diffraction 
light field in the plane of the Fourier transform of the 
mat screen image. 

In the present paper, the conditions of formation 
of the interference pattern, which characterizes the 
spherical aberrations of an optical system of the Kepler 
telescope type, are analyzed. We consider the case of 
the single-exposure recording of a hologram of an image 
of an amplitude scatterer focused according to the 
Gabor scheme.  

According to Fig. 1a the image of the amplitude 
scatterer 1 is formed on the photoplate 2 with the 
telescopic optical system that consists of two 
convergent lenses L1 (the objective) and L2 (the 
eyepiece). The recording of the Gabor hologram is 
performed when the scatterer is illuminated by coherent 
light. After development of the interferogram, it is 
illuminated by a plane wave from a coherent source 
used for its recording and in the Fourier plane 3 
(Fig. 1b) the interference pattern is recorded when 
performing the spatial filtration of the diffraction field 

on the optical axis in the hologram plane with the use 
of a circular aperture in the opaque screen P3. 

 

 
 

FIG. 1. Schematic diagram of recording (a) and 
reconstruction (b) of the Gabor hologram: amplitude 
scatterer 1, holographic photoplate 2, plane of 
hologram recording 3. Here, L1, L2, and L3 are lenses, 
P1 and P2 are aperture stops, and P3 is a spatial filter. 
 

In general, the deformation of a recorded 
wavefront in case of displacement from the plane of the 
paraxial image depends on defocusing of the telescopic 
system, the angle of divergence (or convergence) of a 
spatially bounded coherent beam incident on the 
scatterer, the distance between the plane (x1, y1) and 
the principal plane (x2, y2) of the lens L1, and the 
distance between the principal plane  (x3, y3) of the 
lens L2 and the photoplate. However, consideration of 
all possible detunings in an analysis of real image 
formation leads to cumbersome expressions. So for 
brevity, we assume that the distance between the 
amplitude scatterer and the principal plane of the lens 
L1 is l1 = f1 ± Δl1, where f1 is the focal length of the 
lens L1 and Δl1 specifies the accuracy of scatterer 
positioning in the frontal focal plane of the lens L1. 
Hence, in the Fresnel approximation with allowance for 
diffraction limits using Eq. (1) and omitting the 
constant amplitude and phase factors, the complex 
amplitude in the photoplate plane can be represented in 
the following form: 
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where the symbol ⊗ denotes the convolution operation, 
δ(x4, y4) is the Dirac delta function, k is the wave 
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is the Fourier transform of a real random function of 
coordinates that characterizes the absorption amplitude 
of the scatterer,  
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is the Fourier transform of a complex function, 
ϕ0(x1, y1) is a deterministic function characterizing the 
phase distortions introduced in the wavefront of 
radiation illuminating the amplitude scatterer by the 
aberrations of the optical system,  
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is the Fourier transform of the generalized pupil 
function2 of the lens L1 that takes into account its axial 
wave aberrations, and  
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is the Fourier transform of the generalized pupil 
function of the lens L2. 

After representation of the convolution operation 
in the well-known integral form and taking the Fourier 
transform, Eq. (1) is converted to the form 

u(x4, y4) ∼ exp ⎣
⎡

⎦
⎤ik

2 f2
 (x2

4 + y2

4)  × 

× 
⎩⎪
⎨
⎪⎧
exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ 

ik (f1 + f2)

2 f 

2

2

 (x2

4 + y2

4) × 

×
⎩
⎨
⎧ 

 
exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ 
ik (l21 l + Ll2)

2 l21 f 

2

2

 (x2

4 + y2

4)  × 

×
⎩
⎨
⎧ 

 
[1 $ t($μ1 x4, $μ1 y4)] exp [i ϕ0($μ1 x4, $μ1 y4)] ⊗ 

 ⊗ exp 
⎣
⎢
⎡

⎦
⎥
⎤ik Ll2

2 l21 f 

2

2

 (x2

4 + y2

4)
⎭
⎬
⎫ 

 
 

⎭
⎬
⎫

P1(x4,
 

 
y4)  ⊗

⎭
⎬
⎫

 
P2(x4,

 
y4) , 

(2) 
where μ1 = ll1/(l $ l1) f2 is the scale factor of image 
transformation. 

For a diffusely scattered component of the field 
the width of the function P1(x1, y1) is of the order of 
λf2/d1 (Ref. 3), where λ is the wavelength of the 
coherent light source used for recording and 
reconstruction of the hologram, d1 is the pupil diameter 
of the lens L1. If in the existence domain of function 
P1(x4, y4) the phase change of a spherical wave with a 
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2
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with function P2(x4, y4) outside the convolution  
integral. Assuming that d1 = d2f1/f2, the distribution 
of the field complex amplitude in the region with  
diameter D2 of the photoplate plane can be written as  
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Let us also assume that to produce a negative, an 

emulsion layer that was exposed to light with the 
intensity I(x4, y4) = u(x4, y4) u*(x4, y4) was then 
developed in the region of the characteristic curve with 
the constant light sensitivity. Then for t(x1, y1) <<  1 
(Ref. 4), the transmission amplitude of the hologram 
τ(x4, y4) (Fig. 1b) is determined by the following 
expression: 
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The regular component of light transmission is omitted 
here because in the recording plane it influences only 
the illuminance of a small spot.  

According to Ref. 5 the distribution of the 
complex amplitude of the diffusely scattered 
component of light field in the rear focal plane 
(x5, y5) of the lens L3 with the focal length f3 
(Fig. 1b) can be written as 
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is the Fourier transform of the transmission function of 
the opaque screen P3 with a circular aperture.6 

As a result of substitution of Eq. (5) into Eq. (6), 
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size of any subjective speckle in the photoplate plane. 
Then within the limits of the image of the pupil of lens 
L2 the distribution of the diffraction field is determined 
by the expression: 
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which describes the complex amplitude of the light 
field. The illuminance produced by this field in the 
plane of the Fourier transform 3 (Fig. 1b) has the 
subjective speckle-pattern with speckle size determined 
by the width of function P3(x5, y5). Similarly to Ref. 1 
assuming that the speckle size is much smaller than the 
period of variation of function that modulates the 
speckle pattern (in Eq. (8), the period of variation is 
characterized by the term in curly brackets), the 
illuminance distribution in the rear focal plane of lens 
L3 can be represented as 
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It follows from Eq. (9) that the subjective 
speckle-pattern in the Fourier plane is modulated by 
interference fringes. When ϕ1(x2, y2) = ϕ2(x3, y3) = 0, 
the interference pattern has the form of the Young 
fringes7 with quadratic dependence of the interference 

fringe period on the radius. If d2 ≤ (l/l1) 2 λL, the 
illuminance distribution in the recording plane is 
governed by the expression 

 

I(x5, y5) ∼ {1 + cos [2 ϕ1(μ2 x5, μ2 y5) + 
 

+ 2 ϕ2(μ2 x5, μ2 y5)]}⎟ F1(x5, y5) ⊗ P3(x5, y5)⎟ 

2, (10) 
 

where ϕ1(x2, y2) = 
k
4
 B1(x

2

2 + y2

2)
2, ϕ2(x3, y3) = 

= 
k
4
 B2(x

2

3 + y2

3)
2 (Ref. 6). Here, B1 and B2 are the 

coefficients of the third-order spherical aberrations due 
to lenses L1 and L2 written in designations accepted in 
Ref. 7. In this case, the interference pattern in fringes 
of identical widths has the form of concentric fringes. 
The period of fringes is proportional to the radius in 
the fourth power. 

In our experiments, the hologram was recorded on 
photoplates of the Mikrat VRL type by the He-Ne laser 
radiation with a wavelength of 0.63 μm. The real image 
of the amplitude scatterer was formed with a telescopic 
system that included two identical convergent lenses 
with focal lengths f1 = f2 = f = 180 mm, pupil diameters 
of 25 mm, and the coefficients of spherical aberration 
b 1 = b 2 = 7λ (Ref. 8) expressed in wavelengths. The 
diameter of the illuminated area of the amplitude 
scatterer was 35 mm. 

In Fig. 2, the interference pattern is shown that 
was recorded in the focal plane of a camera objective 
with a focal length of 50 mm when performing the 
spatial filtration of the diffraction field in the hologram 
plane on the optical axis in the process of 
reconstruction of the hologram with the use of a small-
aperture (about 2 mm) laser beam. Recording of the 
hologram was performed in the plane of the best 
position that corresponds to the paraxial image of the 
amplitude scatterer. Based on the above estimation of 
the accuracy for the scatterer position in the frontal 
plane of lens L1 (Fig. 1a), the recording of a series of 
holograms was performed with the step Δl1 = 0.1 mm. 
In contrast to Fig. 2a where the interference pattern 
was due to spherical aberration of the optical system, in 
Fig. 2b the interference pattern was recorded during 
the hologram reconstruction on the optical axis by a 
small-aperture laser beam for a displacement from the 
best position plane of 2 mm. This pattern primarily 
characterizes defocusing. 

 

 
a   b 

FIG. 2. Interference patterns that characterize 
spherical aberration (a) and primarily defocusing (b) 
of a controllable object. 
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The interference patterns of the interferometer 
under consideration are similar to that of the classical 
Twyman-Green interferometer that is employed for 
testing of a wave front shape and recording of spherical 
aberrations of telescopic system.9 But the physical 
nature of interference patterns is different. Thus, the 
Twyman-Green interferometer is used to compare the 
reference and controllable wave fronts. The latter is 
formed in the active channel of the interferometer due 
to double passage of the reference wave through a 
controllable object. The resulting interference fringes 
with identical widths characterize the quality of the 
telescopic optical system. 

According to Eq. (4), for the holographic 
interferometer each speckle in the hologram plane 
contains all information on phase aberrations 
introduced in a light wave by the Kepler telescope. For 
a small region of the amplitude scatterer image on the 
optical axis, the field distribution within each speckle 
is a result of the plane wave diffraction by the pupils of 
the objective and eyepiece of the telescope. It is 
assumed that the plane wave propagates along the 
optical axis. So according to Eq. (7), the waves  
in the plus- and minus- first orders of diffraction  
have the same propagation directions but their wave 
fronts are conjugate and turned through an angle of 
180° relative to each other about the optical axis.  
Due to this fact, we observe the interference  
of two axially symmetric wave fronts. The sensitivity of 
such measurements is no worse than that of the 
Twyman-Green interferometer, but the phase difference 
of two interfering wave fronts is always zero on the 
optical axis. Moreover, it is not necessary to use a 
reference wave with a wave front of high optical 
quality. 

When the hologram is reconstructed at a point 
displaced from the optical axis, for example, at a point 
with coordinates (x40, 0), for all speckles in the 
vicinity of this point the amplitude$phase distribution 
of the field is a result of diffraction of a wave scattered 
with spatial frequency x40/λf in the object plane (for 
the case of unit magnification).  

Because the optical system of the Kepler telescope 
restricts the angular spectrum of scattered waves, wave 
fronts in the plus- and minus- first diffraction orders 
are turned additionally through the angle α = 2 x40/λf 
relative to each other. For these diffraction orders, 
additional phase difference arises on the x axis between 
axially symmetric wave fronts (here we ignore the off-
axis aberrations, because the sensitivity of the 
interferometer to such aberrations is low). The phase 
difference is equal for points symmetric about the point 
at which the hologram is reconstructed by a small-
aperture laser beam. 

Such a situation is illustrated by Fig. 3, where the 
interference pattern is shown that has been recorded in 
the focal plane of the camera during the hologram 
reconstruction at the point displaced from the optical  
 
 

axis by 6 mm. Therefore, the observation of the 
interference patterns described by Eqs. (9) and (10) is 
possible only in the hologram plane when performing 
the spatial filtration of the diffraction field on the 
optical axis. Moreover, the higher is the coefficient of 
spherical aberration that characterizes the quality of 
optical system, the smaller should be the diameter of 
the spatial filter aperture P3 (see Fig. 1b). In its turn, 
this leads to the increased speckle size in the 
observation plane for a fixed focal length of the lens 
L3. When the speckle size becomes close to the width 
of the interference fringe, the interference pattern is no 
longer seen.10 Because of this fact, in Fig. 2 the 
interference fringes corresponding to higher orders of 
interference are absent on the periphery of the image of 
the output pupil. Estimation for the spherical 
aberration made for the low interference orders in the 
optical system under control have shown that it is 
within 14λ.  

 

 
FIG. 3. Interference pattern localized in the far 
diffraction zone when performing the off-axis spatial 
filtration in the hologram plane. 

 

Therefore, our investigations allow us to conclude 
that during the single-exposure recording of the 
hologram of the amplitude scatterer image focused by 
the Kepler telescope, in the best position plane 
corresponding to the recording of a paraxial image, at 
the stage of its restoration the interference pattern in 
fringes with identical widths is formed which 
characterizes the spherical aberrations of the object 
under control. For its observations, the spatial 
filtration of the field in the hologram plane is necessary 
on the optical axis. The filtration is required to ensure 
the coincidence of conjugate wave fronts turned 
through an angle of 180° relative to each  
other about the optical axis in the plus- and  
minus- first orders of diffraction. The interference 
pattern that modulates the speckle-structure in the 
Fourier plane is produced by superposition of these 
wave fronts. To observe the higher orders of 
interference, the camera objectives with shorter focal 
lengths are required. 
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