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The dependence of transition probabilities on the frequency and the strength of a circularly 

polarized electric field is studied theoretically for the He atom. Regularities in the behavior of the 
probabilities were revealed and investigated. It was shown that the transition probabilities and 
lifetimes of the Stark energy levels have the polynomial dependence on the electric field strength. It 
was found that an increase in the frequency of the electric field leads to a decrease in the sensitivity 
of the transition probabilities to the electric field strength. An anisotropy of the probabilities for 
transitions between Stark levels was studied. 

 

Introduction 
 

The gas discharge electric field and transition 
probabilities are among the most important discharge 
characteristics. In plasma physics, the Stark effect is 
used widely in plasma diagnostics, particularly, to 
determine the energy distribution function, electron 
temperature, electron density, etc. Transition 

probabilities are necessary to calculate the lifetimes 
of energy levels and intensities of spectral lines of 
atoms in the external electric field. Calculation of the 
Stark effect and the probabilities of transitions 

between Stark energy levels is an especially urgent 
problem for noble gases, because they are widely  
used in plasma physics. For reliable interpretation  

of experimental results, they, obviously, should be 
compared with theoretical calculations of the 

corresponding characteristics. Consequently, a reliable 

theoretical method, determining wave functions for an 
atom in the external electric field, is needed. The wave 

functions are used to calculate the Stark effect and 
any characteristics of the atom behavior in the 
electric field. 

Spectra of atoms subject to the alternating 
electric field action can be determined from the 
nonstationary Schrödinger equation. The methods of 
this equation solution depend on the field polarization 
(linear, circular, or elliptical). This paper considers 
the dynamic Stark effect in the circularly polarized 
electric field. The electric fields of this polarization 
arise in the high-frequency discharge1 and upon the 
laser excitation.2 At the field circular polarization, 
due to separation of spatial and temporal variables, 
the Schrödinger equation solution becomes much 
simpler, namely, the nonstationary Schrödinger 

equation reduces to the stationary one in the rotating 
wave approximation.3 In spite of the simplification, 
the stationary Schrödinger equation solution is still a 
complicated problem, since the perturbation theory 
can be applied only under the following restrictions. 
First, the electric field strength should be relatively 

low and the perturbation, induced by the external 
electric field, should be smaller than the separation 
between neighboring energy levels. Second, the 

resonance and nonresonance perturbations should be 
calculated by different methods. Finally, to calculate 
the excitation of an atom by the low-frequency or 
high-frequency fields, it is also necessary to apply 
different methods.4–6 

Attempts to derive equations for calculating shifts 
and splitting of atomic energy levels in the field of 
an arbitrary frequency and strength were repeatedly 

undertaken earlier. However, these attempts turned 
out successful only in some particular cases. In Ref. 7, 
the equations are derived for calculation of energy 
level shifts for different model systems; the 

calculations for systems in single- and two-level 
approximations have been carried out in Refs. 6 and 

8. In Refs. 9 and 10, such equations were obtained 
for a particle in a short-range potential and for a 
negative ion. General equations for calculation of the 
Stark effect in terms of the perturbation theory were 
derived in Ref. 11. However, they can be applied 
only to calculations of an isolated atomic level in the 
absence of resonance with the field. In addition, if 
atoms with shells including equivalent electrons are 
considered, then the equations presented in Ref. 11 
can be applied only to calculation of Rydberg states 
of these atoms. 

In this paper, to obtain the wave functions for 
atoms in the circularly polarized electric field, the 
theoretical method proposed and developed in Refs. 12 
and 13 is used. This method, free of restrictions 
inherent in the perturbation theory, is used to calculate 
the dynamic Stark effect and the probabilities of 
spontaneous transitions between the Stark levels for 
the He atom, as well as to study the dependence of 
the Stark effect and the transition probabilities on 
the frequency and strength of the electric field. This 
problem is of urgency, because both the Stark effect 
and transition probabilities are widely used for 
explanation of the processes proceeding in plasma 
and for the plasma diagnostics. 
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Method of calculation 
 
In the circularly polarized electric field, the 

nonstationary Schrödinger equation is written in the 
form  

  
( , ) ˆ ( ) ( ) ( , ),0 cos sin

n

n

t
i H eF x t y t t

t

∂ψ ⎡ ⎤= − ω ± ω ψ⎣ ⎦∂

r

r r  (1) 

where ψn is the wave function of the system nth state; 
ˆ ( )0H r  is the unperturbed Hamiltonian, the operator 

( cos sin )eF x t y t− ω ± ω  describes the perturbation 

caused by the atom interaction with the circularly 
polarized field of the frequency ω and the strength F. 
The signs + and – correspond to the right and left 
polarizations of the field, respectively. To pass on to 
the stationary Schrödinger equation, we use the 
rotating wave approximation.3 

To pass on to the coordinate system rotating 
around the axis Z with the frequency ω, we introduce 
the wave function in this coordinate system  

 ˆ( , ) ( ) ( , ),exp
z

t i tJ tϕ = ω ψr r  (2) 

where ˆ
z

J  is the z-component of the total angular 
momentum operator. After substitution of the wave 
function (2) into Eq. (1), we have 
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i Q t
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∂ϕ
= ϕ
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r

r  ˆ ˆ ˆ ˆ( – ).0 z x
Q H J FD= ω ±  (3) 

As can be seen from Eq. (3), the operator ˆQ  is 
independent of time. Consequently, in the rotating 
wave approximation, it is possible to pass on from 
the nonstationary Schrödinger equation (1) to the 
stationary one, and we obtain  

 ˆ ( ) ( ),Qϕ = εϕr r  (4) 

where 

 ( , ) exp(– ) ( );t i tϕ = ε ϕr r  (5) 

ˆQ  is the energy operator of the atom in the electric 
field; ε and ( , )tϕ r  are the energy and the wave function 
of the atom in the electric field in the rotating 
coordinate system. Obviously, ε and ( , )tϕ r  can be 

found through the use of the stationary perturbation 
theory. Instead of the Schrödinger equation (4) solution 
within the framework of the perturbation theory, we 
use the approach proposed in Refs. 12 and 13. 
  It was shown in Ref. 12 that the wave functions 
and energies of an atom, being the solutions of  
the Schrödinger equation (4), are determined by 
diagonalization of ˆ .Q  This matrix can be obtained in 
representation of the unperturbed wave functions 

(0)
,

n
ϕ  calculated in the absence of the external electric 
field. In this representation, the matrix elements of 
ˆQ  are written as  

( ) ( ) ( ) ( ) ( )ˆ ˆ( ) ( ) ,0 0 0 0 0

mn n mn m z n m x n
Q E J F D= δ −ω< ϕ ϕ > ± < ϕ ϕ >r r (6) 

where (0)
n

E  is the energy of the nth state of the atom 
in the absence of the external electric field; Dx is the 
x-component of the dipole transition operator. 
  The diagonalization of the energy matrix ˆQ  with 
the elements (6) yields a set of wave functions and 
the energy spectrum for n states of the atom in the 
electric field. Diagonalization of ˆQ  allows us to obtain 
the energies εn and the wave functions in the form 
 

 (0)( , ) e ( )ni t
n nk k

k

t C r− εϕ = ϕ∑r  (7) 

for n states of the atom in the external electric field 
in the rotating coordinate system. The coefficients 
Cnk in the wave function (7) depend on the frequency 
and strength of the external electric field. To find the 
atom averaged energies in the initial coordinate 
system, it is necessary to carry out the averaging over 
the period of oscillations. After the averaging, the 
energy of the system in the electric field in the initial 
coordinate system is written in the following form: 
 

 

 ( , ) ( , ) ( , )
n n n

E t H t t=< ψ ψ >=r r r  

 ˆ( ) ( ) .
n n z n

J= ε + ω < ϕ ϕ >r r  (8) 

It follows from Eq. (8) that 
n

E  is independent of time. 
  The matrix elements of the operator Dx are 
determined as  

 ( ) ( ) ( )ˆ0 0 1

2

J M

m x n xD JM D JM
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−
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where the reduced matrix elements J D J′ ′< γ γ >  are 
calculated depending on the bond type. For the He 
atom, the LS bond takes place, and the matrix 
elements J D J′ ′< γ γ >  for the transitions 1 1

2 31 1

N N
l l l l−  

are calculated by the equations14: 
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Lcore is the orbital quantum number of the atomic 
core without the outer l2 electron. The radial integral 

nl n lR r R
′ ′

< >  from Eq. (12) is calculated by the 
semiempirical equation, being the improved 

modification of the Bates—Damgaard formula.15 The 
particular form of the semiempirical equation and  
the details of its derivation can be found in Ref. 16. 
  The wave functions and energies, determined 
from the diagonalization of the ˆQ  matrix, are used to 
calculate the probabilities of spontaneous transitions 
in the electric field. The probability of spontaneous 
emission of a photon into an element of the solid 
angle dΩ upon the transition from the state |n> to 
the state |m> with the polarization eq is determined 
by the equation14: 

 
2

2

3 2
| e | d .i

q q n m

e
A

hc m

ω
= < Ψ Ψ > Ω

kr
e p  (13) 

Here ω is the transition frequency; p is the electron 
momentum; eq is the vector of polarization; k is the 
wave vector. In the dipole approximation, Eq. (13) 
can be rewritten as  

 
3

2

3
| | d ,q q n mA

hc

ω
= < Ψ Ψ > Ωe D  (14) 

where – i

i

e= ∑D r  is the dipole moment of the atom; 

Ψn and Ψm are the wave functions of the nth and mth 
states of the atom in the external electric field. On 
the basis of Eq. (14), the total transition probability 
for radiation, polarized in the direction eq and 
averaged over all possible spatial orientations in D, is 
calculated by the equation 

 
3

2

3
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3
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A D
c

ω
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where Dq are cyclic components of D. The wave 
functions Ψn and Ψm are determined from the 
diagonalization of the energy matrix ˆQ  with the 
matrix elements (6). After substitution of Ψn and Ψm 

into Eq. (15) and application of the Wigner—Eckart 
theorem, the equation for the probability of the 
transition JM → J′M′ between the magnetic sublevels 
takes the form  
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where ( )JM

i
C  and ( )JM

jC
′ ′  are the coefficients of 

expansion of the wave functions for the atom in  
the filed in terms of the unperturbed wave functions 

(0)( );i i ii
J Mϕ γ  ωJM,J′M′ is the frequency of transition 

JM → J′M′. The reduced matrix elements 
|| ||i i j jJ D J< γ γ >  are calculated by Eqs. (10)–(12). 

  The existing experimental techniques usually do 
not permit the measurement of the split between 
magnetic sublevels and the determination of the 
corresponding transition probabilities. That is why 
we calculate the probabilities of transitions J → J′ 
between the Stark energy levels, using the equation 
 

 
1

( ) ( ).
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MM

A J J A JM JM
J
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The lifetime of the Jth energy level in the electric 
field is determined as  

 
1 1

.
( )

J
J

J

A A J J
′

τ = =
′→∑

 (18) 

Consider the results obtained within the 
framework of the above approach. 

 

Results and discussion 
 
The theoretical method proposed was applied to 

calculation of the dynamic Stark effect and the transition 

probabilities for the He atom in the circularly polarized 

electric field. All calculations were performed in the LS 
bond. When calculating the ˆQ  matrix, the ns, np, 
nd, and nf states with n ≤ 10 were taken into 
account. Thus, the calculation of the helium atom 
energy matrix in the electric field took into account 
115 energy levels (501 magnetic sublevels). The 
electric field strength was considered in a range up to 
1 kV/cm with the following frequencies ω: 100, 
241.813 ⋅ 105, and 283.005 ⋅ 106

 MHz. Such electric 

fields are produced by real excitation sources: 
ω = 100 MHz is the electric field frequency in a high-
frequency discharge, ω = 241.813 ⋅ 105

 MHz is the 

frequency of the CO2 laser, and ω = 283.005 ⋅ 106 MHz 
is the frequency of the Nd laser. In this work, 
spectral lines of the visible region were considered. 
  First of all, the calculations have shown that the 
increase in the frequency of the electric field results 
in the decrease of the shift and split of the atomic 
energy levels in the field. As an illustration, Fig. 1a 
depicts the spectral line shift and split for the He 
atom in the electric field of different frequencies. The 
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shift is determined as ΔÅ = Å – Å0, where E is the 
position of the line under consideration in the electric 
field, E0 is the position of this line in the field absence. 
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Fig. 1. Stark effect and transition probabilities as functions 
of the electric field strength for the He atom: 81P1–21S0 
spectral line, λ = 329.772 nm (a); probabilities of allowed 
and forbidden transitions (b). 

 
The analysis of the wave functions has shown 

that the increase in the electric field frequency leads 
to the decrease in interaction between the atom 
energy levels in the electric field, which is one of  
the possible causes for the decrease in the spectral 
line shift and split with the increasing electric  

field frequency. In the high-frequency discharge,  
the interaction between energy levels is very  
strong, which leads to appearance of forbidden lines, 
and probabilities of forbidden transitions become 

comparable with those of allowed transitions, as the 
electric field strength increases (Fig. 1b). With the 
increase in the electric field frequency, the interaction 
between the energy levels decreases, and in the 
region of optical frequencies the energy levels become 
nearly isolated. 

Then, it seems interesting to study the dependence 
of the transition probabilities on the electric field 
frequency and strength. To test the theoretical 
method accuracy, compare the calculated transition 
probabilities with the accurate data17 in the absence 
of the electric field. The results of this comparison 
are presented in Table 1. 

 
Table 1. Probabilities of the transitions  

1snlLSJ – 1sn′l′L′SJ in the absence of electric field  
for the He atom, in 106

 ⋅ s–1 

Aik 
Transition i → k λ, nm 

This work Ref. 17 

73P0–23S1 276.462 1.17 1.11 
83P0–23S1 272.400 0.79 0.78 
93P0–23S1 269.692 0.57 0.55 
51P1–21S0 361.467 3.80 3.76 

61P1–21S0 344.858 2.27 2.39 
73D1–23P0 370.620 2.33 2.47 

91P1–21S0 325.921 0.69 0.65 
63S1–23P0 386.873 0.27 0.26 
83S1–23P0 365.316 0.11 0.12 

83S1–23P1 365.303 0.32 0.36 

 
As is seen, the calculated transition probabilities 

are in a good agreement with the accurate data, that 
indicates the reliability of the calculation technique. 
Table 2 summarizes the calculated probabilities of the 
transitions nlJM–n′l′J′M′ (J, J′ ≤ 1) between magnetic 
sublevels for the He atom in the high-frequency 

discharge. 
 

Table 2. Probabilities of the transitions  
nlJM – n′l′J′M′ in the high-frequency discharge 

(ω = 100 MHz), in 106
 ⋅ s–1 

Aik 

F, kV/cm
Transition 

i → k 
λ, nm 

(at F = 0)
Aik 

(at F = 0) 
M → M′ 

0.2 1 

0 → –1 0.79 0.30
83P0–23S1 272.400 0.79 

0 → +1 0.79 0.28

0 → –1 0.56 0.40
93P0–23S1 269.692 0.57 

0 → +1 0.56 0.10

–1 → 0 1.46 1.41
71P1–21S0 335.552 1.45 

+1 → 0 1.46 1.42

–1 → 0 0.99 0.88
81P1–21S0 329.772 0.98 

+1 → 0 0.99 0.90

–1 → 0 0.70 0.51
91P1–21S0 325.921 0.70 

+1 → 0 0.70 0.52

–1 → 0 6.80 4.25
53D1–23P0 402.749 6.83 

+1 → 0 6.72 4.27

–1 → 0 2.08 1.59
63D1–23P0 382.084 3.79 

+1 → 0 3.22 1.02

–1 → 0 1.70 1.0
73D1–23P0 370.620 2.33 

+1 → 0 0.65 0.5
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It follows from Table 2 that for all considered 
transitions the transition probabilities decrease with 
the increasing electric field strength. In addition,  
for all transitions, even if they have identical 
probabilities at a low field strength (F = 
= 0.2 kV/cm), the probabilities of the population of 
magnetic sublevels of the same level begin to differ 
with the increasing field strength. The difference 
between these probabilities can be quite significant, 
in particular, for 73D1–23P0 the transition probabilities 
between the magnetic sublevels differ twofold. 

The results of investigation of the dependence of 
the transition probabilities between magnetic sublevels 
on the electric field frequency are given in Table 3 
and Fig. 2. 

 
Table 3. Probabilities of the transitions  

93P0(M)–23S1(M′) as functions of the frequency  
of the electric field, in 106

 ⋅ s–1 

Aik 
ω, MHz M → M′ 

F = 0.2 kV/cm F = 1 kV/cm

0 → –1 0.190 0.402 
100 

0 → +1 0.189 0.103 

0 → –1 0.187 0.182 
241.813 ⋅ 105 

0 → +1 0.187 0.190 

0 → –1 0.187 0.187 
283.005 ⋅ 106 

0 → +1 0.187 0.187 
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Fig. 2. Probabilities of transitions nd3D1–2p3P0 (n = 6,7) as 
functions of the electric field frequency: (HFD) high-
frequency discharge, ω = 100 MHz; (CO2) CO2 laser, ω = 
= 241.813 ⋅ 105 MHz; (Nd) Nd laser, ω = 283.005 ⋅ 106 MHz. 
 

It is seen from Table 3 that an increase of the 
electric field frequency leads to decrease in the 
anisotropy of transition probabilities between magnetic 

sublevels and, as follows from Table 3 and Fig. 2, to 
the lower sensitivity of the transition probability to 
the electric field strength. This loss in the sensitivity 
is caused by a weaker interaction between the energy 
levels, which is observed with the increasing electric 
field frequency. It should be noted that the transition 
probabilities have the polynomial dependence on  
the electric field strength, namely, Aik = a + bF + 
+ cF2

 + dF3
 for the high-frequency discharge and 

Aik = a + bF + cF2
 + dF3

 + eF4
 + fF5

 for the CO2 laser. 
At the electric field frequency, corresponding to the 
Nd laser radiation, probabilities of transitions 
nd3D1–2p3P0 are insensitive to variations of the 
electric field strength in the considered range. Similar 
polynomial dependences are also observed for 
probabilities of other transitions. 

Consider now the probabilities of transitions 
JM–J′M′ between magnetic sublevels at J, J′ ≤ 2. 
The calculated probabilities of the transitions are 
shown in Fig. 3, from which it is seen that, as in the 
case of transitions between the levels with J, J′ ≤ 1, 
the increase in the electric field strength leads to 
decrease of the probabilities. In addition, at all 
considered frequencies of the electric field, the strong 
anisotropy is observed in the transition probabilities: 
the larger the magnetic quantum number M for 
M → M′, the higher the probability of the transition 
to the sublevel M. The maximal transition probability 
corresponds to max|M|. The most pronounced 

anisotropy of probabilities is observed in a high-
frequency discharge as a consequence of the strongest 
(as compared to other electric field frequencies) 

interaction between the energy levels. 
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Fig. 3. Probabilities of the transition 53D2–23P1 as 
functions of the electric field frequency. 
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Fig. 4. Behavior of the transition probabilities and lifetimes of energy levels for the He atom in the high-frequency discharge: 
probabilities of the transitions nlJ–n′l′J (a); lifetime of the nd1D2 states (n = 4, 5) (b). 

 

As to the probabilities of the transitions J–J′, 
calculated by Eq. (17), and the lifetimes of the He 
atom states in the external electric field, calculated 
by Eq. (18), they, obviously, also have the polynomial 
dependence on the electric field strength. For the 
considered range of the electric field strength, the 
following polynomial dependences were obtained: 
cubic polynomial for the high-frequency discharge, 
fifth-order polynomial for the CO2 laser, and no 
dependence on the field strength for the Nd laser. As 
an illustration, Fig. 4 depicts the dependences of the 
probabilities of the transitions J–J′ (Fig. 4a) and the 
lifetimes of the states nd1D2 (Fig. 4b) for the He 
atom in the high-frequency discharge. In Fig. 4a, 
AJJ′/A0 is the ratio of the transition probabilities AJJ′ 

for the atom in the electric field to the probability A0 

of the corresponding transition in the absence of an 
electric field. 

The reliability of the results obtained can be 
assessed by comparing the lifetimes calculated in the 
absence of the electric field with other theoretical 
results and with the experiment. The experimental 
data for lifetimes of the considered levels in the 
electric field are absent. The results of the comparison 
are given in Table 4. 

 

Table 4. Lifetimes of the states nd1
D2 of the He atom  

in the absence of electric field 

τ, ns This work Theory [Ref. 18] Experiment [Ref. 18]

τ(41D2) 36.34 37 35 ± 4 35 ± 4  38 ± 2

τ(51D2) 70.35 71.5 72 ± 4 72 ± 5 71.9 ± 18

It is seen that the lifetimes calculated in this 
work are in a good agreement with the results 
obtained by other theoretical methods and with the 
experimental data. As can be seen from Fig. 4, for 
the high-frequency discharge both the transition 
probabilities and the lifetimes depend on the electric 
field strength as a cubic polynomial. The higher  
is the state, from which the transition occurs, the 
more sensitive is the transition probability and, 
consequently, the lifetime of the atomic state to 
variations in the field strength. 

 

Conclusions 
 

General analysis of calculations performed in 
this work reveals some regularities for the dynamic 
Stark effect, transition probabilities, and lifetimes for 
the He atom in the circularly polarized field of 
arbitrary strength and frequency. 

First, the increase in the frequency of the electric 
field leads to a smaller split and shift of spectral lines. 
  Second, probabilities of the allowed transitions 
in most cases decrease with the increasing electric 
field strength. In addition, the forbidden lines appear 
due to interaction between Stark levels. The 
probability of the forbidden transitions increases with 
the increasing field strength. As the frequency of the 
electric field increases, the sensitivity of the 
transition probabilities to variations of the electric 
field strength decreases. 

Third, the anisotropy of probabilities has been 
found for a significant number of transitions. In most 
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cases, it is connected with interaction of atomic 
energy levels in the electric field. 

Finally, the polynomial dependence of the 
transition probabilities on the electric field strength 
has been revealed for all considered transitions. 

The theoretical results obtained in this work can 
be used for explanation of physical processes occurring 
in the plasma generated in the circularly polarized 
alternating electric field. These results can also be 
useful for the modeling of new sources of light and 
excitation. 
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