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The problem of ambiguity in the torsion$rotational Hamiltonian is considered as applied to a 

CH3$XH molecule having a torsion-type oscillation.  The parameters of ambiguity are determined on the 
basis of analysis made by O.N. Ulenikov [J. Mol. Spectrosc. 119, 144$152 (1986)]; the reduction of the 
effective Hamiltonian is presented. 

 

1. Introduction 
 

For a long time the internal rotations in molecules 
were of considerable interest for the molecular 
spectroscopy.1,2  Various aspects of this problem, such 
as the form of a Hamiltonian and wave functions, 
different approximations and methods for solution of 

Schro⋅⋅dinger equation, properties of the potential 

functions and solutions to the Schro⋅⋅dinger equation, 
problems of symmetry properties, and so on were 
analyzed and discussed in the spectroscopic literature in 
detail.  However, until now at least one problem is still 
open, namely, the problem on the ambiguity in the 
torsion-rotational Hamiltonian.  Similar situation for 
normal molecules has caused numerous problems; it was 
discussed, for example, in Refs. 1$5.  It is interesting 
to consider the problem of ambiguity as applied to 
molecules with internal rotation. 

Similar situations occurred rather often when 
studying normal rigid molecules until publication of a 
series of papers by Watson (Refs. 1$3). These papers 
analyzed the problem of ambiguity as applied to 
asymmetric molecules. 

For a better understanding of the following 
estimates, Appendices A and B give some notes to the 
problems of 

(a) derivation of the exact rotational$vibrational 
Hamiltonian of a molecule; 

(b) construction of the effective operator. 
 

2. Effective torsion-rotational 

Hamiltonian 

 

As shown in the Appendix B, the effective 
operator (the effective torsion$rotational operator in 
our case) can be derived in different ways.  
Nevertheless, all possible effective operators turn out to 
be related to each other through unitary 
transformations, namely: 

 H 
∼

ef = P+HefP ,  (1) 

where 
 P+P = PP+ = 1 .  (2) 

Here the operators H 
∼

ef, Hef, and P depend on the 
rotational variables θ, ϕ, χ, and the torsion variable ρ. 

Then the structure of torsion-rotational energy 
levels can be determined using any effective operator 
Hef, and any of such effective Hamiltonians can be 
obtained in the way shown in the Appendix B.  On the 
other hand, the effective Hamiltonian can be derived 
based  only on known symmetry properties of a 
molecule. (For a CH3$XH type molecule of the G6 
symmetry group, the table of characters, as well as the 
properties of the rotational variables θ, ϕ, χ, and the 
torsion variable ρ are given in Tables 1 and 2). 

 
Table 1. Table of characters of the G6 = C3v symmetry 
group. 

 
 

 
Symmetry

 

 
e  

 

2q3 
(132)
(123)

3σv 
(13)* 
(12)* 
(23)* 

 

 
Operator 

 
Vibrational 
functions 

`1 1 1 1 Jy, 

cos (3n ρ) 
⏐νi> 

`2 1 1 $1 Jx, Jz, Jρ 

sin (3n ρ) 
⏐νj>  

e  2 $1 0 $ $ 
 

 

Table 2. Transformations of rotational and torsion variables 
in G6. 

 

Symmetry 
operation 

P θ ϕ ρ 

(123) P θ ϕ ρ + 2π/3

(23)* π $ P π $ θ π + ϕ $ρ 
 

Then the effective Hamiltonian can be written in 
the following form (for an isolated vibrational state): 

 Hν = ∑
pqrs

 ∑
nC

 XnC
pqrs {fnC(ρ), Js

ρ}+ (J
p
x J

q
y J

r
z + J

r
z J

q
y J

p
x ) , 

  (3) 

where X
nC
pqrs are the parameters, which, on the one 

hand, can be derived from analysis of experimental 
data, while on the other hand, can be written in the 
analytical form as functions of fundamental 
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characteristics of the molecule (see Appendices A and 
B); Jx, Jy, and Jz are components of the total angular 
momentum; 

 Jρ = $i � 
ä

äρ ;     fnA1
 = cos 3n ρ;     fnA2

 = sin 3n ρ, 

where i is an imaginary unit; � is Plank’s constant; n is 

a positive integer; ` denotes symmetry. 
Having analyzed the derivation of the effective 

Hamiltonian H(ν) with the use of formulas from the 
Appendices A and B, we can show that the parameters 
X

nC
pqrs must have different order of smallness. Actually, 

assume that λ is Born#Oppenheimer parameter: 
λ ≈ 

4
me/M or λ ≈ Bα/ω, where me is the electron 

mass; l is the average mass of nuclei of a molecule; bα 
is the mean value of the rotational constant; ω is the 
mean harmonic frequency of vibrations.  Then, 
according to formulas from the Appendix A, it turns 
out that the parameters X0C

pqrs (p + q + r + s = k) must 
be on the order of λm as compared with the parameters 

X
0C
pqrs (p

∼
 + q

∼
 + r

∼
 + s

∼
 = 1); here m = k/1. 

In those estimates, it was assumed that the "main" 
parameters X0q

0002 (corresponding to the parameter F in 
standard designations) and X

0q
2000, X

0q
0200, and X

0q
0020 

(corresponding to the rotational parameters `, b, and 
q ) have the same order of smallness. 

In the general case, the effective operator H(i) 
must satisfy some requirements, namely5: 

1) it must be Hermitian, that is 

 H
+
(ν) = H(ν)  (4) 

or 

 ∑
pqrs

  ∑
nC

 (XnC
pqrs)*∑

pqrs

 ∑
nC

 XnC
pqrs{fnC(ρ), J

s
ρ}+(J

p
x J

q
y J

r
z + J

r
z J

q
y J

p
x) = 

= ∑
pqrs

  ∑
nC

 XnC
pqrs {fnC(ρ), Js

ρ}+ (J
p
x J

q
y J

r
z + Jr

z J
q
y J

p
x) .  (5) 

In Eq. (5) it is taken into account that Jx, Jy, Jz, Jρ, 
fnC(ρ) are Hermitian and every of Jx, Jy, and Jz 

commutes with Jρ and fnq .  It follows from Eq. (5) 

that the parameters XnC
pqrs must be real; 

2) H(ν) must be transformed by the fully 
symmetric representation `1 under the symmetry 

operations of the group G6, that is, Xn`1
pqrs ≠ 0 only for 

even values of the sums (p + r + s) and X
n`2
pqrs ≠ 0 for 

the odd sums (p + r + s); 
3) The Hamiltonian H(ν) must be invariant to the 

inversion of time: 

 ∑
pqrs

 ∑
nC

 XnC
pqrs {fnC(ρ), Js

ρ}+ (J
p
x J

q
y J

r
z + Jr

z J
q
y J

p
x ) = 

($1)p+q+r+s
∑

pqrs

 ∑
nC

 XnC
pqrs {fnC(ρ), Js

ρ}+ (Jp
x J

q
y J

r
z + Jr

z J
q
y J

p
x ), 

(6) 

that is, the parameters Xn`1
pqrs and Xn`2

pqrs are nonzero only 

for odd sums (p + r + s). The largest of the parameters 

X
nC
pqrs are given in Table 3. The corresponding orders of 

the parameters in terms of λm are also given in Table 3. 

Table 3. Symmetry-allowed parameters X
1C
pqrs (p + q + 

+ r + s = 2) of the effective Hamiltonian H2. 
 

 

X
nC
pqrs Xl 

P Q R S C n = 1,2,3 l 

2 0 0 0 A1 n 2n 
0 2 0 0 A1 n 2n 
0 0 2 0 A1 n 2n 
1 0 1 0 A1 n 2n 
1 0 0 1 A1 n 2n 
0 0 1 1 A1 n 2n 
0 0 0 2 A1 n 2n 

1 1 0 0 A2 n 2n 
0 1 1 0 A2 n 2n 
0 1 0 1 A2 n 2n 

       

P Q R S C n* = 0,1,2 l* = 4

     n* ≥ 3 l* = 2n*

4 0 0 0 A1 n* l* 
0 4 0 0 A1 n* l* 
0 0 4 0 A1 n* l* 
0 0 0 4 A1 n* l* 
2 2 0 0 A1 n* l* 
2 0 2 0 A1 n* l* 
2 0 0 2 A1 n* l* 
0 2 2 0 A1 n* l* 
0 2 0 2 A1 n* l* 
0 0 2 2 A1 n* l* 

3 0 1 0 A1 n* l* 
3 0 0 1 A1 n* l* 
1 0 3 0 A1 n* l* 
0 0 3 1 A1 n* l* 
1 0 0 3 A1 n* l* 
0 0 1 3 A1 n* l* 
2 0 1 1 A1 n* l* 
1 2 1 0 A1 n* l* 
1 2 0 1 A1 n* l* 
0 2 1 1 A1 n* l* 
1 0 2 1 A1 n* l* 
1 0 1 2 A1 n* l* 

3 1 0 0 A2 n* l* 
1 3 0 0 A2 n* l* 
0 3 1 0 A2 n* l* 
0 3 0 1 A2 n* l* 
0 1 3 0 A2 n* l* 
0 1 0 3 A2 n* l* 
2 1 1 0 A2 n* l* 
2 1 0 1 A2 n* l* 
1 1 2 0 A2 n* l* 
0 1 2 1 A2 n* l* 
0 1 1 2 A2 n* l* 
1 1 0 2 A2 n* l* 
1 1 1 1 A2 n* l* 

The order of smallness of the parameters XnC
pqrs was 

estimated using the Hamiltonian (`.1) from Appendix A 
and general formulas for the effective Hamiltonian (see 
Appendix B). In this case, the effective Hamiltonian 
can be presented in the following form: 
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 Hef = λ0H0 + λ2H2 + λ4H4 + ... , 

where Hn is the operator of the order of λn as compared 
with the zero order of smallness of the operator H0. 

 

3. Ambiguity in torsion$rotational 
Hamiltonian  

 
Let us consider the unitary transformation of the 

effective operator (1) in a more detail.  Obviously, the 
form of the operator Hef does not change at a random 
unitary transformation, that is, Hef and H 

∼
ef must have 

the same structure (3), but  different values of the 
parameters X

nC
pqrs and X 

∼nC
pqrs.  In this situation it is 

important to address the following questions: 
a) A set of what parameters obtained from analysis 

of the  spectrum (XnC
pqrs and X 

∼nC
pqrs) should be used for 

determination of really fundamental characteristics of 
the molecule? 

b) How many and which parameters are 
independent? 

To answer these questions, let us take into account 
that the unitary operator P in Eq. (1) depends on the 
same operators, as the operators Hef and  H 

∼
ef do.  

Furthermore: 
a) Because the operator P is unitary by definition, 

it can be presented in the exponential form 

 P = exp (iS) ,  (7) 

where S = S+ is the Hermitian operator; 
b) Because the Hamiltonian Hef in Eq. (1) is a set 

of operators of different orders of smallness, it is 
reasonable to believe that the operator S in Eq. (7) is 
also a series expansion into operators of different orders 
of smallness: 

 S = ∑
l

 Sl ;  (8) 

c) In the general case any of the Sl  operators can 
be presented in the form 

 Sl = ∑
pqrs

 ∑
nC

 (l)SnC
pqrs {fnC(ρ), J

s
ρ}+ (Jp

x J
q
y J

r
z + Jr

z J
q
y J

p
x );   

  (9) 

d) The operators Sl must be transformed by the 
irreducible representation `1 of the symmetry group of 
a molecule and must alternate the sign at the inversion 
of time. The latter circumstance means that the 

parameters l
S

nC
pqrs must be real and nonzero for odd 

values of the sum (p + q + r + s).  Moreover, lSn`1
pqrs = 0 

for odd values of the sum (p + r + s) and lSn`2
pqrs

 = 0 for 

the even sum (p + r + s).  The nonzero parameters 
l
S

nC
pqrs, which satisfy these conditions, are presented in 

the Table
 
4. 

Table 4. Symmetry-allowed parameters of the ambiguity 

S
nC
pqrs (p + q + r + s = 1, 3). 

 

P Q R S n C 

0 1 0 0 n A1 

1 0 0 0 n A2 
0 0 1 0 n A2 
0 0 0 1 n A2 

2 1 0 0 n A1 
0 1 2 0 n A1 
0 1 0 2 n A1 
0 3 0 0 n A1 
1 1 1 0 n A1 
1 1 0 1 n A1 
0 1 1 1 n A1 

3 0 0 0 n A2 
0 0 3 0 n A2 
0 0 0 3 n A2 
2 0 1 0 n A2 
2 0 0 1 n A2 
0 0 2 1 n A2 
1 0 2 1 n A2 
0 0 1 2 n A2 
1 0 0 2 n A2 
1 0 1 1 n A2 
1 2 0 0 n A2 
0 2 1 0 n A2 
0 2 0 1 n A2 

Assume that (as is usually believed in the 
rotational$vibrational theory) the operator exp(iS) in 
Eq. (7) performs the small transformation of the initial 
Hamiltonian Hef (that is, summation in Eq. (8) for 
l ≥ 1).  In this case the exponential operator exp(iS) 
can be presented as a series expansion  

 exp (iS) = 1 + ∑
l

 iSl + 
1
2!

 (∑
l

 iSl )
2
 + ..,  (10) 

and the transformed effective Hamiltonian can be 
derived in the following form: 

 H 
∼

ef = H 
∼ef

0  + H 
∼ef

1  + ... =  

  = ∑
pqrs

 ∑
nC

 X 
∼nC

pqrs {fnC(ρ), Js
ρ}+ (J

p
x J

q
y J

r
z + Jr

z J
q
y J

p
x ) = 

  = Hef + ∑
l

 [iSl,Hef] + 
1
2!

 ∑
ml

 [iSm, [iSl,Hef]] + ... . (11) 

The right-hand side of Eq. (11) is the sum of the  
operators the left-hand side of it is dependent on, that is, 
the parameters X 

∼nC
pqrs of the transformed effective 

Hamiltonian are functions of not only the parameters X 
∼

nC
pqrs of the initial effective operator but also of the 
parameters l

S
nC
pqrs entering into Eq. (8).  This means that 

not all the X nC
pqrs parameters  of the effective Hamiltonian 

are independent.  The dependence between the parameters 
can be excluded by the corresponding choice of the 
variables l

S
nC
pqrs. At the same time, studying the 

dependence of the parameters X 
∼nC

pqrs on X
nC
pqrs and l

S
nC
pqrs 

favors better understanding and explanation of some 
discrepancies following from the results of theoretical 
analysis of different experimental data. 
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Consider Eq. (11) in a more detail. As seen from 
the data presented in Tables 3 and 4 the zeroth 
approximation gives the following results: 

 H 
∼

0 = H0   or   X 
∼0`1

pqrs
 = X0`1

pqrs
  (12) 

for the following combinations of the subscripts p, q, r, 
and s: 2000, 0200, 0020, 0002, 1001, 0011, 1010. 

We have omitted the expressions corresponding to 
the contribution to the rotational potential function 
because there were no problems with the ambiguity in 
the potential function. 

The next approximation in Eq. (1) gives 

 H 
∼

2 = H2 + [iS2, H0] .  (13) 
With the appearance of the operator of the order 

of λ1  in the effective Hamiltonian, we have neglected 
the contribution from the operators S1 of the first order 
in Eq. (8).  In other words, the operator S1 = S 0`1

0100
 Jy 

can be included into S from Eq. (8). However, this 
gives only small corrections to the parameters X0`1

pqrs
. 

As seen from Table 3, in this case seven parameters 

of the type X1`1
pqrs

 and three parameters of the type X1`2
pqrs

 

will become allowed from the viewpoint of symmetry 
(in both cases p + q + r + s = 2). At the same time, 
according to Table 4, four parameters of the type S2 are 

allowed in Eq. (3), namely, (2)
S

1`1
0100, 

(2)
S

1`2
1000, 

(2)
S

1`2
0010, 

(2)
S

1`2
0001, i.e., ten symmetry allowed spectroscopic 

parameters of the type X
1C
pqrs (p + q + r + s = 2) are 

related to each other with four additional relations. 

Consequently, only six parameters X
1C
pqrs 

(p + q + r + s = 2) can be considered independent; just 
these parameters can be found from analysis of the 
experimental data. 

Analysis of Eq. (13) based on the data from 
Tables 3 and 4 gives the relations between the 
parameters X 

∼1C
pqrs (p + q + r + s = 2). These relations 

are given in Table 5 in the following form: 

 (X 
∼1C

pqrs $ X1C
pqrs)/� = Δpqrs = α(2)

1  S1000 + α(2)
2  S0100 + 

 + α(2)
3  S0010 + α(2)

4  S0001 .  (14) 

As seen from Table 5, the parameter X1`1
0200, that is, 

the difference (Fν $ q 2) in the standard designations (see 

Table 6 for correspondence between the standard 

designations and those used in this paper) remains 
unchanged after unitary transformation (1). At the same 
time, any of the rest nine parameters can be changed. 

The data of Table 5 allow one: 

a) to select six of the ten parameters X
1C
pqrs, which 

should be used as independent variables in analysis of the 
experimental data. The rest of four parameters can be 

found by setting the parameters X 
∼1`2

0101
, X 

∼ 1`2
0110

, X 
∼ 1`2

1100
, and 

X 
∼1`l2

1100
 zero in Eq. (4). At the same time, assuming that 

the parameters X
1q
pqrs in Eq. (14) are found from the 

fundamental characteristics of the torsion$rotational$

vibrational Hamiltonian (`.1) using the formulas from 
the Appendices A and B, we can determine the unique 

correct relations between the parameters obtained from 

analysis and from the fundamental characteristics; 
b) to determine the relations between the set of 

parameters obtained in analysis of the same 
experimental data. In the latter case, we can write the 
following relations (using the relations between the 
parameters from Table 6): 

 F 
∼
ν $ C 

∼
2 = Fν $ C2 .  (15) 

That is, the difference (Fν $ q 2) must be invariant at 

any set of the parameters obtained from analysis of the 
same experimental data: 

  

2ρ
 

F
 (X 

∼1`1
1001

 $ X1`1
1001

) + 
d
∼

ab $ dab

2  + 

 + 
F 
∼
ν $ Fν + C 

∼
2 $ C2

4Dab
 [B $ A + ρ2/4F] = 0;  (16) 

2
 

Dab

F
 (X 

∼1`1
1001

 $ X1`1
1001

) + ρ(F 
∼
ν $ Fν + C 

∼
2 $ C2)/4F + 

 + (B $ C)(2F 
∼
ν $ 2Fν + C 

∼
2 $ C2 + k 

∼
5 $ k5)/ρ + 

 + 3(D 
∼

bc $ Dbc) = 0;  (17) 

 [(2F/ρ) $ (ρ/2F)](F 
∼
ν $ Fν + k 

∼
5 $ k5) + 

   + 2F(F 
∼
ν $ Fν + C 

∼
2 $ C2)/ρ $ 2(k 

∼
6 $ k6) = 0 ;  (18) 

 
2(C $ A)

F
 (X 

∼1`1
1001

 $ X1`1
1001

) + 

+ (
C $ A

F
 + 9) 

 

ρ
 

Dab
 
F 
∼
ν $ Fν + C 

∼
2 $ C2

4  + 3(D 
∼

ac $ Dac) $ 

 $  

Dab 

ρ (2F 
∼
ν + C 

∼
2 + k 

∼
5 $ 2Fν $ C2 $ k5) = 0 ;  (19) 

 ⎝
⎛

⎠
⎞18F

Dab
 $ 

ρ
 

2

2FDab
 (F 

∼
ν $ Fν + C 

∼
2 $ C2) + 

 + 24(X 
∼1`1

0101
 $ X1`1

0101
) $ 

4
 

ρ
F

 (X 
∼1`1

0101
 $ X1`1

0101
) = 0 . (20) 

A similar approach to the next approximation in 
the Eq. (11) allows analysis of the centrifugal 

distortions X0q
pqrs (p

 + q + r + s = 4).  In this case, as 

seen from Tables 3 and 4, 20 parameters of ambiguity 

(4)S
0q
pqrs (p + q + r + s = 3) (7 (4)S

0`1
pqrs and 13 (4)S0`2

pqrs) 

can exclude 20 of 35 parameters X0q
pqrs (p + q + r + s = 4). 

That is, only 15 parameters X
0q
pqrs can be considered 

independent and used in analysis of the experimental 
data. 
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Table 5. Relations between the parameters X 
∼ 1C

pqrs and X
1C

pqrs 

(p + q + r + s = 2) of the effective Hamiltonians H 
∼

2 and H2. 

Cpqrs α1 α2 α3 α4 

A12000 $12X1001 4X1010 $ $ 

A10200 $ $ $ $ 

A10020 $ $4X1010 $12X0011 $ 

A10002 $ $ $ $24X0002

A11010 $12X0011 8(X0020$X2000) $12X1001 $ 

A11001 $24X0002 4X0011 $ $12X1001

A10011 $ $4X1001 $24X0002 $12X0011

A11100 $4X1010 12X1001 8(X2000$X0200) $ 

A10110 8(X0200$X0020) 12X0011 4X1010 $ 

A10101 $4X0011 24X0002 4X1001 $ 
 

N o t e .  For brevity Xpqrs ≡ X
0A1
pqrs

. 
 

Table 6. Relations between the parameters X
nC

pqrs used in the 
literature and in this paper. 
 

NCpqrs Parameters used in the literature 

0A10002 F/4 

0A10011 ρ/4 

0A10020 A/4 

0A12000 B/4 

0A10200 C/4 

0A11010 Dab/2 

0A10004 K4/4 

1A10002 $K7/2 

0A10013 K3/4 

1A10011 $K6/2 

0A10022 (Gv + K2)/4 

0A10202 (Gv $ 2C1)/4 

0A12002 (Gv + 2C1)/4 

0A11012 Δab/2 

1A20110 Dac/2 

1A12000 $(Fv + C2)/4 

1A10200 $(Fv $ C2)/4 

1A10020 $(Fv + K5)/4 

1A11010 $Dab/2 

0A10031 (K1 + Lv)/4 

0A10211 (Lv $ 2C4)/4 

0A12011 (Lv + 2C4)/4 

0A11021 δab/2 

0A14000 ($Δj $ 2δj $ δjk)/4 

0A10400 ($Δj + 2δj $ δjk)/4 

0A10040 ($Δj $ Δk $ Δjk)/4 

0A12200 ($Δj + δjk)/2 

0A12020 ($Δj $ 0.5Δjk $ δk $ δj)/2 

0A10220 ($Δj $ 0.5Δjk + δk + δj)/2 

0A11210 (Dabj $ 2Dabjk)/2 

0A13010 (Dabj + 2Dabjk)/2 
0A11030 (Dabk + Dabj)/2 
1A21030 Dba/2 

 

N o t e .  Dabjk denotes the parameters at [(JxJz + JzJx), J
2

x $ 

$ J
2

y]+ , and ($δjk) is the parameter at (J
2

b $ J
2

c)
2
, that is, the 

contribution is [$δjk(J
2

b $ J
2

c)
2
]. 

Table 7 gives the relations between the fourth-order 
parameters of the transformed and initial torsion$rotational 
Hamiltonians as functions of the parameters of ambiguity 
(4)S

0q
pqrs (p + q + r + s = 3). 

Table 7. Relations between the parameters X 
∼ nC

pqrs and X
nC

pqrs 

(p + q + r + s = 4) of the effective Hamiltonians H 
∼

4 and H4. 

ΔX004 = 0 

ΔX102 = 24S111X002 

ΔX200 = $6S111X100 

ΔX004 = 4S012X101 

ΔX022 = 8S111X002 $ 8S111X101 + 12S030X101 

ΔX040 = 0 

ΔX103 = $8S012X002 + 4S111X101 + 8S012X200 

ΔX121 = $24S030X002 + 16S210X002 + 16S012X020ΔX103 $ 
$ 16S210X020 $ 16S012X200 + 24S030X200 

ΔX202 = 8S111(X200$X002) + 4($S012 + S210)X101 

ΔX220 = 8S111(X002 $ X200) $ 12S030 X101 + 8S210X101 

ΔX301 = 8S210(X200 $ X002) $ 4S111X101 

ΔX400 = $ 4S210X101 

ΔX
003

001 = 4S
011

001X101 + 4S012X
100

001 

ΔX
021

001 = $4S
011

001X101 + 8S
110

001(X002 $ X020) + 4S111X
001

001 $ 

$ 8S012X
100

001 + 12S030X
100

001 

ΔX
102

001 = 4S
110

001X010 + 8S
011

001(X200 $ X002) $ 4S012X
001

001 + 

+ 4S111X
100

001 

ΔX
120

001 = 4S
110

001X101 + 8S
011

001(X020 $ X200) $ 12S030X
001

001 $ 

$ 8S210X
001

001 $ 4S111X
100

001 

ΔX
201

001 = $4S
011

001X101 + 8S
110

001(X200 $ X002) $ 4S111X
001

001 + 

+ 4S210X
100

001  

ΔX
300

001 = $4S
110

001X101 $ 4S210X
001

001 

ΔX
002

002 = 4S
010

002X101 + 4S
011

001X
100

001 

ΔX
020

002 = 4S
110

001X
001

001 $ 4S
011

001X
100

001 

ΔX
101

002 = $4S
011

001X
001

001 + 8S
010

002(X200
 $ X002) + 4S

110

001X
100

001

4 S111X
100

001 

ΔX
200

002 = $4S
010

002X101 $ 4S
110

001X
001

001 

ΔX
001

003 = 4S
010

002X
100

001 

ΔX
100

003 = $4S
010

002X
001

001 

ΔX
002

100 = 4S
010

100X101 + 12S
001

110X
001

001 

ΔX
020

100 = 0 

ΔX
200

100 = $4S
010

100X101 + 12S
100

110X
100

001 

ΔX
001

101 = 24S
001

110X002 + 12S111X
001

001 + 4S
010

100X
100

001 

ΔX
100

101 = 24S
100

110X002 $ 4S
010

100X
001

001 + 12S111X
100

001 

ΔX
011

110 = 12S
011

001X100 + 8S
100

110(X002
 $ X020) $ 4S

001

110 $ 12S
010

100X
001

001 

ΔX
110

110 = 12S
110

001X100 + 8S
001

110(X020 $ X200) + 4S
100

110 $ 12S
010

100X
100

001 

ΔX
010

111 = 24S
010

002X100 $ 24S
010

100X002 + 4S
100

110X
001

001 $ 4S
001

110X
100

001 

N o t e .   Here ΔX
pqr
nCs = X 

∼pqr
nCs $ X

pqr
nCs. 
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Appendix A 
 

It can be shown that the main part of the torsion$
rotational Hamiltonian (dependent on the operators Jx, 
Jy, Jz, and Jρ) for a molecule having a large-amplitude 
motion can be written in the following form: 

 H = 
1
2
 ∑
λ

 Pλ
2 + 

1
2
 ∑
ij

 μij(qλ, ρ)(Ji $ Gi)(Jj $ Gj) + 

 + V(qλ, ρ) ,  (`.1) 

where i,  j = x, y, z, ρ; Gi = ∑
λϑ

 ζλϑ
i qλpϑ (subscripts 

α = x, y, z, λ, υ denote different small-amplitude 

oscillations); ζλϑ
α  = ∑

Nβγ

 εαβγ lNβλlNγϑ; ζλυ
ρ

 = $ ζϑλ
ρ

 = 

= ∑
Nα

 lNαϑ 

dlNαλ

dρ ; parameters lNαυ depend on the torsion 

angle ρ; 

μij(q, ρ) = μ0
ij + ∑

λ

 μ
λ

ij(ρ)qλ + ∑
λϑ

 μλϑ
ij (ρ)qλqϑ + ... ,  (`.2) 

μij in (`.2) are parameters of different order of 

smallness; μ0
ij are independent of ρ and are of the order 

of λ2 in relative to the main part (harmonic vibrations) 

of the Hamiltonian (`.1); μ
λ

ij are parameters of the 

order of λ3; they can be divided into two parts: (a)  
those that depend on sin 3ρ and cos 3ρ and 

(b) independent of the torsion parameter ρ; μλϑ
ij (ρ) are 

the parameters of the order of λ4, dependent on sin2
 3ρ, 

cos2 3ρ, and sinρ cosρ (or, in other words, on sin 6ρ 
and cos 6ρ), etc. 

The potential function V(q, ρ) can be presented as 

V(q, ρ) = ∑
λ

 ωλqλ
2 + ∑

λμν

 kλμν(ρ)qλqμqν + (1 $ cos 3ρ) + 

 + ∑
λμνξ

 kλμνξ(ρ)qλqμqνqξ + ... .   

The second term here is of the order of λ1 relative to 
the main part, the next two terms are of the order of 

λ2, etc. 
 

Appendix B 
 

If the operator theory of perturbations is presented 
in the matrix form, then the effective torsion$rotational 
Hamiltonian of the isolated vibrational state ⏐ν> can be 

written in the general case as 

H(ν)
ef  = 

= <ν | ∑
mklpq =1

   
1
m!

 [iSk, [iSl, ... [iSp, H0 + ∑
q =1

 Hq] ... ]] | ν> . 

(B.1) 

Here the subscript m is the number of the commutator 
in the considered term; the subscripts k and q in Sk and 
Hq show the orders of smallness of the corresponding 
operators; H0 and ⏐ν> are the zero-order 

operator and its wave functions.  It is important that 
the effective operator H(ν)

ef  can only be considered 
determined  if all the matrix elements <ν∼⏐iSk ⏐ν∼

∼
> are 

determined in Eq. (B.1). At the same time it can be 
shown10 that any effective operator, for which: 

1) the matrix elements <ν⏐iSk ⏐ν∼> and <ν∼⏐iSk ⏐ν> 

(ν∼ ≠ ν) are calculated as  

 <ν| iSn | ν
∼> = 

1

<ν∼| H0 |ν
∼> $ <ν| H0 |ν>

 × 

× <ν| ∑
mklpq

    
1
m!

 [iSk, [iSl, ... [iSp, H0 + ∑
q 

 Hq] ... ]] |ν> 

(B.2) 

(in Eq. (B.1) only the terms for which (m + k + l + 
+ p + q = n) are summed); 

2) any other matrix elements <ν⏐iSk ⏐ν> and  
<ν∼⏐iSk ⏐ν∼

∼
> (ν∼ ≠ ν∼

∼
) are not determined by Eq. (B.2) and 

can be considered as random operators. This means that: 
a) for the vibrational state considered we can 

obtain an unlimited set of Hamiltonians, every of which 
is correct; 

b) the simplest method to obtain the effective 
Hamiltonian is to set the matrix elements <ν⏐iSk⏐ν> 
and <ν∼⏐iSk⏐ν∼

∼
> (ν∼, ν∼

∼
 ≠ ν) equal  to zero. 

At the same time it can be shown10 that the 
ambiguity arising in the effective Hamiltonians of the 
type of Eq. (B.1) is none other than the unitary 
equivalence of different effective operators, that is,  

 H
∼

ef = P+HefP ,   

where H
∼

ef and Hef are two different effective operators 
for the same vibrational state; these operators are 
constructed in accordance with Eq. (B.1); P is the 
unitary operator depending on the torsion and 
rotational parameters. 

Analysis we have done above favors understanding 
of some differences in the results of analysis of torsion$
rotational spectra.6$9 

The Hamiltonian Hef, which has been analyzed in 

this paper, differs by the term X
0`1
1001

 JxJρ from the 

Hamiltonian used in Refs. 6$9.  Nevertheless, the 
unitary transformation of the form  

exp ($2πCJy/h)Hef
 exp ($2πCJy/h), where q  = 

X
0`1

1001 

 X
0`1
0011

, 

can exclude the term X 0`1
1001

 JxJρ.  In this case all the 

above results and conclusions are correct. 
In particular, in Ref. 8 devoted to global analysis 

of νt = 0,1,2 torsion states, 17 quartic centrifugal 

distortion parameters corresponding to X
0q
pqrs 

(p + q + r + s = 4) were used as independent. At the 
same time, from the above analysis it follows that only 
15 parameters are really independent. Naturally, the use 
of dependent parameters may give an unpredictable 
result.  In particular, the parameters may differ widely 
as in Refs. 8 and 6, 7, and 9. 
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