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An adaptive algorithm for spatial prediction of meteorological fields based on the use of Kalman 

filter and the second-order polynomial model with coefficients varying in time is considered. This 
algorithm is capable of accounting for the variable configuration of the local network of aerological 
stations. The results of optimization (from the viewpoint of the minimum prediction error) of the 
number of stations involved are discussed. The quality of the adaptive algorithm developed is evaluated 
for the case of its application to the procedure of objective analysis of mesoscale wind and 
temperature fields. 

 

Introduction 
 

Among numerous problems in the modern 

meteorology, of particular interest is the problem of 
objective analysis of meteorological fields (in the first 
turn, geopotential, temperature, and wind fields) over 
a mesoscale region based on the data of a local 
network of aerological stations. The solution of this 
problem, unlike the objective analysis of mesoscale 
meteorological fields, depends in a higher degree on 
the regular reception of data from all available 

aerological stations, because their number within 
mesoscale networks is limited. 

In practice, however for many reasons (for example, 
because of instrumentation failure or storm weather), 
radiosonde observations may be omitted at some or 
other station in the network considered. In addition, 
large errors may appear during data transmission 

through communication channels due to typing errors, 
transmission distortions, etc. As a consequence, the data 

received  may  be partially or completely not decodable. 
In any of these cases it becomes necessary, for 

correct operation of the spatial interpolation algorithms 

(the basis of objective analysis), to reconstruct the lost 
data for one or another station. In the earlier papers,1–3 
the spatial interpolation algorithms were developed 
using the assumption that observations for a given 
configuration of a local observation network are being 
always conducted. The configuration of a local 
observation network is understood here as the number 
of aerological stations and their spatial arrangement 
within a mesoscale region. 

In contrast to what has been stated in Refs. 1–3, 
in this paper we propose a little bit different technique 
for solving the problem of objective analysis of 
meteorological fields over a mesoscale region. This 
technique is also based on the application of Kalman 
filter and the second-order polynomial model with time 

dependent coefficients, but it accounts for the varying 

(for different hours of observation) configuration of a 
local network. Besides, this technique uses the additional 
procedure of splitting the initial measurements into 
regular and fluctuating components. Consider this 
technique in a more detail. 

Let the measurements of a meteorological field ξ 
be conducted at ith points of a given mesoscale region 
(i = 1, 2, …, S) with coordinates (xi, yi). The task is 
to determine the field ξ0 at some point (or a node of a 
regular grid) with coordinates (x0, y0), located at the 

territory not covered by meteorological information 
within the same mesoscale region, from the data of 
these measurements. For this purpose, represent the 

field ξ as a sum of the regular ξ  and fluctuating ξ′  
components (i.e., ξ = ξ + ξ′), and consider the 
methods for reconstruction of each of the components. 

Thus, to estimate the regular component of the 

field 0ξ  at the point or node (x0, y0) from the data of 
three nearest (to this point) stations, we can use the 
following equation: 

 ξ = + − + −0 1 0 2 0( , ) ( ) ( )i i i ix y a a x x a y y , (1) 

or in the matrix form  

 = ⋅( , ) ( , ) ,x y H x y Aξξξξ  (2) 

where ξ ξ ξ=
T

1 1 2 2 3 3( , ) ( , ), ( , ), ( , )x y x y x yx yξξξξ is the 
measurement vector, T denotes transposition; 

− −
= − −

− −

1 0 1 0

2 0 2 0

3 0 3 0

1 ( ) ( )

( , ) 1 ( ) ( )

1 ( ) ( )

x x y y

x x y y

x x y x

H x y  is the transfer matrix; 

A = | a0, a1, a2 | T is the vector of unknown coefficients, 
which is estimated as 

 –ˆ ( , ) ( , ).1= ⋅A H x y x yξξξξ  (3) 
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Solving Eq. (3), we can easily find the value of ˆ ,0a  
which corresponds to the value of the regular 

component 0ξ  at the point (x0, y0). 

At the same time, the fluctuating component ξ′  is 
estimated by use of Kalman filtering algorithm and a 
few-parameter model describing the spatial variability 
of this field. This model is represented by a second-order 

polynomial with time dependent coefficients, namely, 
 

 
ξ′ = + + +

+ + +

0 1 2

2 2

3 4 5

( ) ( ) ( ) ( )

( ) ( ) ( ) ,

i i i

i i i i

k a k a k x a k y

a k x y a k x a k y
 

(4)
 

where ξ′ ( )i k is the value of the fluctuating component 
of the meteorological field at the point i with the 
coordinates (xi, yi) at the time k; a0(k), a1(k), …, a5(k) 
are the unknown coefficients of the polynomial.  

For estimation of the polynomial coefficients, 
introduce the vector of states of a dynamic system in 
the following form: 

 X(k) = | a0(k), a1(k),…, a5(k) | T = 

 = | X1(k), X2(k), …, X6(k) | T.  (5) 

In this case, the dynamics of the components of 
the state vector (5) can be represented as a system of 
difference equations 

1: 

 

+ = + ω
 + = + ω


 + = + ω

1 1 1

2 2 2

6 6 6

( 1) ( ) ( )

( 1) ( ) ( )

...

( 1) ( ) ( ),

X k X k k

X k X k k

X k X k k

 (6) 

where ΩΩΩΩ(k) = | ω1(k), ω2(k), ..., ω6(k) | is the vector of 
random perturbations of the system (generating noise, 
state noise). 

In the vector form, the system of equations (6) 

takes the form 

 X(k + 1) = X(k) + ΩΩΩΩ(k).  (7) 

Assume that the fluctuating field (ξ′  = ξ – ξ) is 
measured at the ith points and at k moments in time 

with some error. Then the model of its current 

measurements Yi(k) can be specified as a sum of  
the true value ξ′ ( )i k  and the measurement error εi(k), 
that is, 

 Yi(k) = ξ′ ( )i k + ε ( )i k . (8) 

The whole set of measurements Yi(k) forms the vector 

of measurements Y(k) = | Y1(k), Y2(k), …, YS(k) | T, 
where S is the number of measurement stations involved. 

Represent the model (8) in terms of the state 
variables (5) by introducing the transfer measurement 
matrix H*(x, y) and write the relationship between 
the measurement vector Y(k) and the state vector 
X(k) in the matrix form  

 Y(k) = H*(x, y) ⋅ X(k) + E(k). (9) 

Note that the dimension of the vector E(k) is also 
determined by the number of stations S. 

The transfer measurement matrix H*(x, y) is an 
(S×6) matrix, which is specified through the 

coordinates of the stations as follows: 

 H*(x, y) = 

2 2

1 1 1 1 1 1

2 2

2 2 2 2 2 2

2 2

1

1

1
s s s s s s

x y x y x y

x y x y x y

x y x y x y

− − − − − −
. (10) 

The models of the dynamic system (7) and 
measurements (9) are linear, therefore the estimation 
problem is solved with the aid of the linear Kalman–
Bucy filter,4,5 ensuring the estimation of the state 
vector ( )kX  with the minimum variance. Note that 
in this case the following conditions are imposed onto 
the elements of the models (7) and (9): 

 M [ΩΩΩΩ(k) ΩΩΩΩT(j)] = Qkδkj 

for the covariance matrix of the state noise (δkj is the 
Kronecker delta); 

 M [E(k) ET(j)] = Rkδkj 

for the covariance matrix of measurement errors; 

 M [ΩΩΩΩ(k) E(k)T] = 0 

for random processes ΩΩΩΩ(k), and E(k) are mutually 
uncorrelated; and  

 M [X0 ΩΩΩΩT(k)] = M [X0 E(j)T] = 0 

that means that the initial state X0 is uncorrelated 
with the perturbations ΩΩΩΩ(k) and E(k). 

The algorithm for estimation of the polynomial 
coefficients has the following form: 

*

ˆ ˆ ( )

ˆ( , )

01) ( 1| ) ( 1) 1 [ ( 1)

( 1| )],

(k k k k k k

k k

+ = + + + ⋅ + ⋅ + −

− ⋅ +

X X G J Y

H x y X (11)
 

where 

  ˆ ˆ ˆ ˆ( ) ( ) T

1 2 6( 1) | ( 1), 1 ,..., 1 |k X k X k X k+ = + + +X  

is the estimate of the state vector at the time (k + 1); 

 ˆ ˆ|+ =( 1 ) ( )k k kX X   

is the vector of estimates predicted for the time (k + 1) 
from the data at the step k; G(k + 1) is the (6 × S) 
matrix of weighting coefficients; J0(k + 1) is the 
diagonal matrix that allows for the presence or 
absence of data from a measurement station. 

Unlike the classical Kalman filter,6 an additional 
factor – matrix J0(k + 1) – is introduced in Eq. (11). 
This matrix is formed at the stage of preliminary 

analysis of current measurements; J0(k + 1) is an (S × S) 
matrix with  the  diagonal elements taking the values: 

0 denotes the absence of measurements or low 
quality data from the measurement station i; 

1 denotes the data from the station i with no 
abnormal errors. 
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Thus, the mathematical operations (11) exclude 
the components of the measurement discrepancy  

 [Y(k + 1) – H*(x, y) ˆ ( 1| )]k k⋅ +X  

corresponding to incorrect or missing measurements 

from the formation of the estimate ˆ +( 1)kX . 

In other respects, the algorithm corresponds to the 

classical linear Kalman–Bucy filter. The calculation of 
the weighting coefficients G(k + 1) is a recurrence 

procedure independent of Eq. (11), which involves 
solution of matrix equations for covariances of 
estimation errors4: 

 ( 1) ( 1| )k k k+ = +G P H*
T(x, y)× 

 ×[H*(x, y) ( 1| )k k+P H*
T(x, y) 1( 1)]k

−+ +ER ; (12) 

 + = +( 1| ) ( | ) ( )k k k k kP P RΩΩΩΩ ; (13) 

 ( 1| 1)k k+ + =P  

 [I – G(k + 1)H*(x, y) ⋅ ( 1| ),k k+P  (14) 

where P(k + 1 | k) is the a posteriori (6 × 6) covariance 
matrix of prediction errors; P(k + 1 | k + 1) is the a 
priori (6 × 6) covariance matrix of estimation errors; 
RE(k + 1) is the diagonal (S × S) covariance matrix 
of observation noise; RΩΩΩΩ(k) is the diagonal (6 × 6) 
covariance matrix of the state noise; I is the unit 
(6 × 6) matrix. 

The final calculation of the predicted value of a 

meteorological parameter ξ̂ ( )+0 1k  at the point (x0, y0) 
and time (k + 1) is performed by the equation  

 ξ̂ ( )+0 1k = ξ +0
ˆ ( )+1 1X k + ˆ ( )+2 1X k x0+ ˆ ( )+3 1X k y0 + 

 + ˆ ( )+4 1X k x0y0 + ˆ ( )+5 1X k x0
2 + ˆ ( )+6 1X k y0

2. (15) 

To start the algorithm (11), (15) at the time 
k = 0 (initiation time), it is necessary to set the 
following initial conditions: the initial estimation 

vector 
ˆ ( ) =0 [ (0)]MX X , the initial covariance matrix 

of estimation errors  

 ˆ ˆ( | ) {[ ( ) ( )] [ ( ) ( )] },= − ⋅ − T
0 0 0 0 0 0MP X X X X  

as well as the value of the elements of the noise 
covariance matrices RE(k) and RΩΩΩΩ(k). 

In practice, the values of ˆ ( )0X  and (0|0)P  can be 
specified from the minimum of information on real 
properties of the system, and in the case of complete 
absence of useful information they are set to be 

ˆ ( )0X = 0 and (0|0)P = I. 
The adaptive Kalman filtering algorithm considered 

uses the second-order polynomial model. It was tested 
for efficiency in application to the objective analysis 
of mesoscale temperature and wind fields. For this 
purpose, we used the data of two-year (2002–2003) 
observations at thirteen aerological stations: Schleswig 

(54°32′ N, 09°33′ E), Emden (53°23′ N, 07°14′ E), 
Greifswald (54°06′ N, 13°24′ E), Bergen (52°49′ N, 
09°56′ E), Lindenberg (52°13′ N, 14°07′ E), Essen 
(51°24′ N, 06°58′ E), Meiningen (50°34′ N, 10°23′ E), 
Idar-Oberstein (49°42′ N, 07°20′ E), Stuttgart (48°50′ N, 
09°12′ E), Kummersbruck (49°26′ N, 11°54′ E), Prague 

(50°00′ N, 14°27′ E), Munich (48°15′ N, 11°33′ E), 
Brno-Sokolnice (49°07′ N, 16°45′ E), which form a 
typical mesoscale network (Fig. 1). This network was 
chosen, because it is represented by the largest number 
of aerological stations separated by the minimum (as 
compared to other networks) distances. 
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Fig. 1. Mesoscale network. 

 

All the sampled data were reduced (through 
interpolation with the allowance for the data of 
singular points) to the system of geometric heights: 0 
(ground level), 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 
4.0, 5.0, 6.0, and 8.0 km. 

Since the chosen mesoscale network includes quite 
a large number of aerological stations, it was 

interesting what number of stations can ensure the 
maximum accuracy of spatial prediction based on the 
technique proposed. Therefore, at the first stage (that 
is, before estimating the quality of the adaptive 

algorithm), we have conducted numerical experiments 
on selection of the optimal number of aerological 
stations, providing for minimum error in the spatial 
interpolation of the temperature and zonal and 

meridional wind fields. For this purpose, Bergen 
station (see Fig. 1) was taken as a control station, to 
which the interpolation was performed. The optimization 
procedure consisted in the sequential reduction of the 

number of stations involved (depending on their 
separation from Bergen) and the estimation, at every 

step, of the quality of interpolation of the meteorological 
field with the algorithm proposed. The number  
of aerological stations was thus reduced from 12 to 3. 

The results of this estimation are shown in Fig. 2, 
which presents, as an example, the standard error (δξ) 
of spatial interpolation of temperature and zonal and 
meridional wind at the levels of 0.4, 3.0, and 8.0 km 

as a function of the number of stations involved N.  
It follows from the plots that the optimal number  
of stations is N = 6 regardless of a height level  
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and a meteorological parameter. Indeed, the use of 
measurements from six stations (shown by squares in 

Fig. 1) provides for minimum standard error of 
interpolation. Similar results were also obtained in the 
case of spatial extrapolation of the field ξ to Essen 

station. 
At the second stage, having in mind these results, 

we have realized the procedure of statistical estimation 
of the quality of an adaptive algorithm based on the 
use of Kalman filter and the second-order polynomial 
model. The spatial interpolation and extrapolation of 
the fields of temperature and orthogonal wind velocity 
components were performed to the same control stations 

(Bergen and Essen) from the data of six stations 
determined in the process of optimization. 

Here it should be emphasized that the estimation 
of the quality of spatial interpolation (extrapolation) 

of these meteorological fields was performed as applied 
to prediction of the spread of an industrial pollutant 
cloud. In this case, according to Ref. 7, we used the 
layer mean temperature and wind values calculated 
by the equation 

 
0

0

,

0

1
( )d ,

h

h h

h

h h
h h

< ξ > = ξ
− ∫  (16) 

where <⋅> denotes averaging over a given atmospheric 
layer, for the height ranges h – h0 (here h0 corresponds 
to the ground level, and h is the height of the top 
boundary of the layer chosen): 0–0.2, 0–0.4, 0–0.8, 
0–1.2, 0–1.6, 0–2.0, 0–2.4, 0–3.0, 0–4.0, 0–5.0, 
0–6.0, and 0–8.0 km. 

As an example, Fig. 3 shows the summer plots of 
the standard errors of spatial interpolation δ1 (or 
extrapolation δ2) of layer-averaged values of temperature 
<T>, zonal <U> and meridional <V> wind as 

functions of height along with the corresponding 
standard deviations σ obtained from the data of six 
stations of the mesoscale network. 

The analysis of Fig. 3 shows that the adaptive 
algorithm proposed yields higher accuracy of the 

results if used for spatial interpolation. In this case, 
the standard errors vary within 1.1–1.4°Ñ (for <Ò>) 
and 1.5–2.0 m/s (for <U> and <V>) regardless of  
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Fig. 2. Standard error in estimation of temperature (T), zonal (U) and meridional (V) wind vs. the number of stations 
involved N; height of 0.4 (curve 1), 3.0 (2), and 8.0 km (3). 
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Fig. 3. Height dependence of standard errors of spatial interpolation (δ1) and extrapolation (δ2) of layer mean values of 
temperature <T>, zonal <U> and meridional <V> wind, as well as standard deviations σ averaged over the network. 
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an atmospheric layer. Second, this algorithm gives 
results, which are acceptable in practice if it is used 
for spatial extrapolation within a mesoscale region, 
yielding the standard error of such extrapolation to the 

distance of 230 km no higher than 1.5°Ñ (for <Ò>) and 

2.0 m/s (for <U> and <V>) over entire atmospheric 
boundary layer. 

Thus, the adaptive algorithm considered, which 
is based on Kalman filter and the polynomial model 
with time dependent coefficients can successfully be used 

for meteorological support (with the forecast data) of 
assessment and prediction of local atmospheric pollution. 
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