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Processes leading to self-similarity of plasma dynamic properties in pulse gas discharge lasers 
(PGL) in a wide range of variation of initial conditions of the discharge are described. The first 
integrals of the equations and self-similar solutions of kinetic equations describing the evolution of 
plasma for a space self-maintained longitudinal high-current pulse-periodic discharge in a mixture of 
neon with metal vapors (copper, barium) are presented. The characteristics of discharge plasma in 
similar schemes of excitation are the same and can be described by the self-similar solutions. Possible 
mechanisms, restricting the plasma self-similarity in a pulse-periodic PGL discharge during the time 
of a current pulse are discussed. 
 

Introduction 

Results of investigations of low-temperature 
non-isothermal pulse nanosecond gas discharges are 
reported in many publications. Such discharges are 
widely applied in pulse gas-discharge lasers (PGL). 
Despite the available authoritative monographs,1–3 
ambiguous opinions about simulation methods of 
plasma dynamics and discharge parameters in 
different moments of evolution of such discharges can 
be found. The similarity relations4,5 for pulse gas 
discharge lasers at self-restricted transitions have 
been established, but there are still no publications 
about self-similar solutions of equations for PGL.  

Note that the self-similar solutions reveal 
symmetry in dynamics of plasma formation and 
demonstrate that changes in scales of independent 
variables can be compensated by the similarity 
transformation of other dynamic PGL variables. The 
self-similar solutions are usually found by a self-
similar substitution, whose form is defined by scale 
transformations of a system of differential equations.  
 It is known that volt-ampere characteristics for 
discharges of PGL with different active media are 
similar in time under similar pumping schemes. The 
presence of this group attribute indicates a possibility 
of using methods of group analysis in the search for 
invariant (scaling) transformations of discharges’ 
plasma and in determination of plasma parameters as 
typical functions of time for certain phases of 
discharge evolution. At present, group analysis of 
differential equations is the most powerful and 
universal method in searching for wide classes of 
exact solutions for differential equations of an 
arbitrary form.   

The system of equations describing the 
evolution of pulse discharge plasma 

Let us consider the plasma of pulse-periodic 
longitudinal low-temperature gas discharge of high-

current stage, having a constant chemical 
composition under conditions of a high pre-pulse 
electron concentration and a pulse length of several 
hundreds of nanoseconds. It is known3 that the 
plasma evolution of such discharge is caused by the 
space ionization of the standard and excited states of 
gas atoms through electrons, accelerated by the 
external pulse of an electric field. The processes of 
plasma decomposition due to ambipolar diffusion and 
shock-radiating recombination proceed much slower, 
and so they can be neglected at current pulses, 
shorter than several hundreds of nanoseconds.  

Let’s write the dimensionless form of the system 
of differential equations describing plasma kinetics of 
the positive column of a pulse discharge in a gas: 
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where 

0

itτ = ν  is the reduced time of the discharge 

evolution; 0

iν  is the full ionization frequency of an 
easily ionized admixture at the beginning of the high-

current stage of the discharge; * 0

ii i/k kν =ν ν  is the 

reduced frequency of single ionization of the 
admixture atoms by electrons from the state k; 
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∑  is the total frequency of inelastic 

collisions of electrons with admixture atoms and 
elastic ones with atoms of the buffer gas, 
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respectively; * 0 0

0 e/n n n=  is the concentration of 

atoms of an easily ionized admixture reduced to 
concentration of electrons at the beginning of the 
discharge high-current stage;  
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are reduced concentrations of gas atoms, plasma 
electrons, atoms that are excited to the level m, 

respectively; *

0i/ε = ε ε  is the reduced mean energy 

of plasma electrons; * 2

a a6 / ðD rν =  is the frequency 

of ambipolar diffusion;  
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is the part of energy that is taken by electrons in the 
near-wall layer of plasma; εki is the ionization energy 

of gas atoms from the level k; 0 0( ),E E= ϕ τ  E0 is 

intensity of the electric field in the discharge plasma 
at the beginning of the high-current (arc) stage of the 
discharge; ϕ0(τ) is the function describing the change 
of intensity of the electric field during the current 
pulse. 

Group analysis of the system  
of differential equations describing 
kinetics of gas discharge plasma 

The kinetic equations (1)–(3) of the system are 
linear differential equations of first order with 
coefficients depending on electron energy, i.e., 
implicitly depending on time. Let’s denote the 

expression *
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equations (1)–(3) and transform equation (3) via 
equation (1).  The system  takes  the following form: 
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It is seen that the equation for ε  does not contain 
e

∗

n  

explicitly. It depends on the initial conditions, time 

function of the electric field, and frequencies of 
inelastic collisions. 

Let us define the invariant transformations, 
which are admissible by system of differential 
equations (4). Using the algorithm of the search for 
group transformations for the system of differential 
equations,6 we come to situation, when the system of 
kinetic  equations  admits  the  transformation  group 
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 which implies that 

the losses of electron energy for the working 
substance ionization considerably exceed other energy 
losses.  

The operator ˆX  of the transformation group, 
which are admitted by the system, corresponds to the 
expansion group. A set of invariants of such a 
transformation for equations of discharge plasma 

kinetics (4) 0Xϕ =�  is 
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Note that the invariants I2 – I4, I7 of the 
transformation of system (4) coincide with those of 
the transformation of Boltzmann equations for 
different plasma particles,7,8 and invariants  
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define the dynamic similarity of the discharge plasma 
evolution. 

Self-similar solutions of equations 

Self-similar solutions of equations of system 
(1)–(3), which admit the extension group with the 

operator Xˆ  have the form  
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where ϕn is a new sought function of generalized 
variables and invariants defining the dynamic 
similarity of processes in the discharge plasma.  

(4)
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Following the idea of self-similarity, represent 
functions entering equations of the system (4) in the 
form 
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Here ϕk are implicit functions of time. Substituting 
representations (6) into equations of system (4), we 
obtain the following solutions: 
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The self-similar solutions of equations of system (4) 
have the form 
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Conclusion 

The self-similar solutions of equations for 
e
,n

∗  

,
m
n
∗  and ∗

ε  of system (4) depend on ϕ
ε
, i.e., on the 

form of the dependence of the electric field on time.  
 
 

Note that the form of the function 
ε

ϕ  depends on a 

particular scheme of the pumping source, which 
forms the pumping pulse and defines the time 
dependence of the electron temperature during the 
pumping pulse. Therefore, if the discharge pumping 
schemes are similar, the dependences of line 
intensities and discharge plasma parameters for 
plasma of such discharges are similar in time.  

If the initial conditions (scales of variables) 
0 0 0 0 0
i e a 0 0iel, , , , , , ,kn Eν ν ν ν ε  are changed in the same 

pumping scheme (ϕ
e
(τ) = const), the self-similar 

solutions undergo scale expansions. This agrees with 
the experimentally observed similarity of time 
dependencies of levels’ population and intensities of 
spontaneous plasma radiation. 
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