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Super-short-term forecasting of the atmospheric aerosol
evolution based on dynamic-stochastic approach and lidar data
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Methodical foundations and algorithms of solving the problem of super-short-term forecast of the
atmospheric aerosol evolution are treated based on the dynamic-stochastic approach. The approach uses
the apparatus of the Kalman filtering. The quality of the algorithms is tested by the data of lidar sensing

conducted in the vicinity of Tomsk.

Super-short-term forecasting of ecological state of
the atmosphere above cities and industrial centers finds
wide application in last years, because it helps to take
adequate precautions against dangerous subsequences of
pollution.

The methods applied now for forecasting
technogenic pollution (including aerosol) use the data
of the available network of meteorological stations and
mesoscale mathematical models based on
hydrothermodynamic equations and the turbulent
diffusion equation.!:2 However, modeling of evolution
of atmospheric pollution (including aerosol formations)
on the basis of the hydrodynamic approach in the
mesoscale limits is a quite difficult problem. This is due
to the fact that the spectrum of mesoscale atmospheric
motions  depends on thermal and orographic
inhomogeneities of the underlying surface, turbulent
characteristics of the atmosphere, and peculiarities of
the temperature stratification. Cloudiness also
significantly  affects spatial distribution of the
underlying surface temperature that can result in
appearance of different mesoscale phenomena.

It should be also emphasized that, according to
Ref. 3, main quantity of admixtures is concentrated in
the planetary boundary layer of the atmosphere. So, in
order to describe the processes of transfer, diffusion,
and transformation of admixtures in more detail, it is
necessary to use realistic mathematical models of the
boundary layer for precalculation of the thermodynamic
regime. The models should, at least, take into account
the diurnal behavior of meteorological parameters and
pollution, orographic and thermal inhomogeneities of
the underlying surface, inhomogeneities of the
turbulent characteristics of the atmosphere, and so on.

Last years, in addition to hydrodynamic approach,
the dynamic-stochastic approach is also used in solving
the problem of the super-short-term forecast. It is based
on the supposition that an atmospheric state can be
described by random fields related to each other
through a system of relationships. However, the
dynamic-stochastic approach has small prehistory in
meteorology and is quite a new instrument of
investigation. The models of transfer and scattering of
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admixtures in the atmosphere constructed in the
framework of this approach make it possible to forecast
the fields of concentration of a polluting substance with
good quality within the advance interval up to 4 hours
(see, foe example, Ref. 4).

The process of forecasting based on the dynamic-
stochastic approach is a continuous process realizable in
two stages:

— assimilation of collected measurements of the
parameters of the atmospheric state and correction of
the model parameters;

— forecasting based on the corrected model.

A random factor is an inherent component of the
process of admixture transport in the atmosphere in the
time intervals of the super-short-term forecasting.
Taking into account this fact, the dynamic-stochastic
approach to forecasting the aerosol evolution in the
atmosphere in small time intervals should be considered
as more realistic.

However, to realize such approach, just the same
turbulent diffusion equation as well as all boundary
and initial conditions necessary for solving it are used
when deriving the forecast equations.

Therefore, another version of the dynamic-
stochastic approach, based on the use of a simplified
model of temporal behavior of a meteorological
parameter represented by the stochastic differential
equation of the second order, is proposed in this paper
for solving the problem of super-short-term forecasting
of the atmospheric aerosol evolution. The peculiarity of
the approach is the fact that the complicated procedure
of solving the turbulent diffusion equation is absent,
hence, realization of the forecast algorithm is much
simpler.

Let us briefly consider the forecasting algorithm
based on the use of the apparatus of Kalman filtering
and differential stochastic equations of the second order
describing the dynamics of temporal variations of the
atmospheric aerosol concentration. Assume that the
correlation properties of this parameter evolution can
be represented as an exponential function.

It is known® that analytical formulae of the
following form are commonly used for approximation of
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temporal correlation functions of the atmospheric state
parameters:

ue(t) = exp(-ar), o >0, )
(1) = exp(-ar?), o >0, )
e(t) = {exp(—alt])}cos pr, o >0, (3)
pe(t) = {exp(-ar?)}cos ptr, a > 0. (4)

Besides, the following formula was proposed® for
approximation of the empirical correlation functions of
the temperature, humidity of air, zonal and meridional
wind:

ne(t) = (1 - a) exp(-po), )

where pg(t) is the temporal correlation function of the
parameter & (here 1 is the time shift), o and B are the
approximating coefficients (in general case they depend
on the height 7).

As additional investigations, based on real lidar
measurements, show, this type of analytical expression
enables one to approximate also empirical correlation
functions of the atmospheric aerosol concentration.
Average approximating coefficients in Eq. (5) for the
layer from 140 to 1140 m (for which reliable lidar data
were obtained) are the following: o =7.5-1076 and
B = 0.05. These values of o and B are used as initial
conditions when initiating the algorithm of estimating
and forecasting the atmospheric aerosol concentration.

According to Ref. 7, a random process with
correlation functions of the form (5) can be described
by the second-order stochastic differential equation

d2e(t) de(t)

de? de
Formula (6) determines the evolution of the
process &(t) at some linear system output when its
input is affected by the white noise w(#). The

transmission function of such a system, according to
Eq. (5) has the formS:

#2552 p250-090 (a-prot) . (6)

_s+(a-B)
H(S)_WY (7)

where s is the Laplace transform parameter.

Introducing the vector of state X(t)=
= |X,(t), X5(B)|T, where T is the transposition operator,
X,(t) = £(¢) is the atmospheric aerosol concentration,
and X,(¢) is the auxiliary variable, one can pass from
the differential equation of the second order (6) to the
system of two stochastic differential equations of the
first order

Xt (B-28X, (D +o(®);

t
X €))
d—;:—BZX1(t)+(B—oc)m(t).

The system of equations (8) can be used as a
model of the space of states when synthesizing the
algorithm for estimations of the current values of the
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atmospheric aerosol concentration based on the Kalman
filtering theory. The limitation for using Eq. (8) is an
uncertainty of values of o and B and their dependence
on the height and time. This limitation can be removed
through introducing an additional variable X3(¢)=p(t, h)
in the vector of states X(#)=|X(t), X,(¥), X3()[T,
ignoring the effect of a in the model of state (because
of its small value), and passing to the extended system
of differential equations

dx

d—tizxz(t)—zxs(t)X1(t)+m1(t),

dx

d—t2=—X§(lf)X1 (t)+0)2(t)7 (€))
dx
39

de

)

where ®((#) and w,(¢) are the equivalent noises of the
state.

The space of states (9) is written assuming that
X3(t) is constant on the whole interval of observations.
Note that the differential equation for X3(¢) can have a
more complicated form depending on the quantity of a
priori data for p.

Let us write the equations of state (9) in the
difference form:

Xy (k+1) = X (R) - 2X(R) X5(R)Aty, + X5 (k) Aty +04(k),
Xy (k+1) = X5 (k) - X (R X2 (R)Aty, + 05 (), (10)
X3(k+1) = Xg(k),

where At;, is the time interval between successive
measurements £ =0, 1, 2, ..., K.

The equation of observations at direct measurement
of the aerosol concentration can be represented by
additive mixture of the true value of X{(¢) and the
measurement error

Y(k) = X (k) +e(k), (11)

where Y(k) is the current measurements of the
atmospheric aerosol concentration at the selected
(fixed) height %, e(k) is the error (noise) of the
measurement.

Let us write Egs. (10) and (11) in the matrix
form:

X(k+1) = ®[X(R)] + TW(kR); (12)
Y(k) = HX(k) + E(k); (13)
where
X1(k)—2X1 (k)Xj(k)+X2(k)Atk
D[X(R)]= Xy (k) - X1 (R X3 (R)Aty,

X3 (k)

is the transitional vector-function of states, H=1[1 0 0
is the vector-function of observations, W(k) is the
10

01
00

(2x1) dimensional vector of the state noises, T =
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is the matrix of transition for the state noises, E(k) is
the vector of the measurement noises.

Equations (12) and (13) completely determine the
structure of the estimation algorithm.9

Because of non-linearity of equations (12), one
should use the extended Kalman filter as the method
for synthesis of the algorithm of estimation. In this
case, equations of optimal estimation of the vector of
states X(k) have the form:

X(k+1) =X+ 1)+ 6XE+ 1) [Y(k+1) -
~ HX(k + 1R)], (14)

where XT(k + 1) = |X;, Xy, X3 is the estimate of the
vector of state at the moment (k + 1); X(k + 1|k) is
the vector of forecasted estimates at the moment
(k+1) by the data at a step k. The estimates are
forecasted using the formula

X(k + 1]k) = ®[X(R)], (15)

G(X, k+ 1) is the (3x1)-dimensional matrix of the
weight coefficients.

The weight coefficients are calculated in the
extended Kalman filter using the recurrent matrix
relationships of the form:

G(X, k + 1) = P(k + 1|k)-HT.[H-P(k + 1]k) -HT +
+ Ry(k + D] (16)

P(k + 1[k) = F[X(R) ] P(K[R)-FT[X (k)] + T-Ry (k) IT,
A7)

P(k+ 1k +1) =[I- G(X, &+ 1)-H]PZ + 1), (18)

where P(k+1]k) is the (3x3)-dimensional a posteriori
correlation matrix of the forecasting errors, P(k+1]k+1)
is the (3x3)-dimensional @ priori correlation matrix of
the estimating errors, Ry (k+1) is the variance of
observation noises, Ry(k) is the (2x2)-dimensional
diagonal correlation matrix of the state noises, I is the
(3x3)-dimensional unit matrix,

F(X(k) = 22X
1-2X5(R)At, Aty —2X,(R)Aty
=1 XAty 1 —2X,(R)X3(R)AL,
0 0 1

is the (3x3)—dimensional Jakobi matrix of the
transitional vector-function.

The procedure of forecasting X;(t + At;) and
Xo(t + Atp) on the interval of advance Aty is realized
by means of solving the difference equations (15) with
the initial conditions

X(k) = [X(k), Xo(k), X5(R)[T

and a smaller step of time quantization.
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To put the filtering algorithm (14)-(18) into
operation at the moment k& = 0 (initialization moment),
it is necessary to set the following initial conditions:

X(0) = M{X(0)} is the initial vector of estimation,
where M is the operator of mathematical expectation;

P(0/0) = M{[X(0) - M{X(0)}][X(0) — M{X(0)}]T}
is the initial correlation matrix of estimation, as well as
the values of the elements of correlation matrices of the
noises R;(0) and Ry (0).

In practice, the values X(0) and P(0|0) can be set
based on the minimum of data on the real properties of
the system. In the case of the full absence of useful

information, the values are set as X(0) =0, and
P(0[0) = I.

The algorithm considered above was used for
solving the problem of the super-short-term forecasting
of the aerosol concentration in the atmospheric
boundary layer.

Let us briefly analyze the results of the statistical
estimation of the algorithm quality for the cases of 4-,
8-, and 12-hour forecasting.

The proposed algorithm was examined using the
measurements of the vertical distribution of the aerosol
scattering coefficient (at total number of measurements
N =90) carried out with a three-path correlation lidar
in the region of Tomsk city (56°N, 85°E) from June 10
to August 12 of 1994 with the time step of 4 hours. As
the vertical resolution of the aforementioned data (after
averaging individual measurements) is about 100 m, it
is possible to study in detail the peculiarities of the
atmospheric aerosol evolution in almost all atmospheric
boundary layer (up to the height of 1140 m).

The following formula was used to determine the
profiles of the aerosol mass concentration N, (mg-m3):

N, (1) = 4olh),

where a(%) is the aerosol scattering coefficient, 4 is the
height.

At the same time, the root-mean-square (standard)
error

" 1/2
5: = [% X G- z;,-)Z} (19)

(here %i and &; are respectively the forecasted and
measured values of the meteorological parameter, i.e.,
the atmospheric aerosol concentration, n is the number
of realizations), and the relative error

95} = 6&/6&, (20)

where oz is the rms deviation characterizing the
variability of the same parameter &, were used for
statistical estimation of the quality of the super-short-
term forecast.

The vertical distribution of the rms errors in
super-short-term forecasting of the atmospheric aerosol
concentration N, (mg-m™3) for different values of the
advance 1 together with its standard deviations are
shown in the Fig. 1 as an example.!! The values of the
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relative errors of the same forecast are given in the
Table.
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Fig. 1. Vertical distribution of the standard deviation (oy,)
and rms errors (8y,) in forecasting the atmospheric aerosol

concentration for different values of the advance (1).

Table 1. Relative errors (0, %) in super-short-term
forecasting of the atmospheric aerosol concentration for
different t

Shift Height, m

©, hours| 140 T 240 [ 340 [ 440 [ 540 [ 640 [ 740 [ 940 [1140
4 |52 54 57 58 56 60 65 66 65
8 |57 59 62 63 61 65 75 78 76
12 | 71 68 71 73 69 74 85 86 94

Analysis of the presented data shows that:

— the dynamic-stochastic approach based on the
use of the apparatus of Kalman filtering and
differential stochastic equations of the second order
provides for the results quite acceptable for practice,
but only at the value of advance t =4 hours. Indeed,
the values of the relative error in the super-short-term
forecasting of the atmospheric aerosol concentration in
the whole considered layer by this method do not
exceed the permissible values 04 = 66% commonly used
in practice of the statistical forecasting!?;
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— the same method can be used in the super-short-
term  forecasting of the atmospheric  aerosol
concentration also at t =8 hours, but only in the
atmospheric layer of 140—640 m, where the condition
6 <6y is fulfilled. Above 640 m the values of the
relative error exceed 66%.

Such a peculiarity of the behavior of the relative
error © well correlates with the corresponding behavior
of the rms deviation: its maximal values are observed in
the layer of 140—640 m, and they dramatically decrease
above 640 m.

Thus, the performed numerical experiments on the
estimation of the quality of the dynamic-stochastic
method based on the use of the apparatus of Kalman
filtering have shown it to be quite efficient for super-
short-term forecasting of the atmospheric aerosol
concentration at t < 4 hours. The proposed method can
be used at t =8 hours only up to the height of 640 m.

It should be noted in conclusion that the obtained
estimates of the quality of the dynamic-stochastic
forecasting of the atmospheric aerosol concentration
need additional examination on the basis of a longer
series of experimental observations.
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