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In this paper we consider the problem of determination of the principal geometrical dimensions of 

a particle that has a shape close to ellipsoid of revolution from the parameters of particle's projections 
onto two orthogonal planes. The errors caused by unknown orientation of the particle are estimated. It is 
shown that these errors may be rather large for an oblate ellipsoid and rather small for the prolate one. 

 
The method proposed earlier for analyzing 

suspended particles1 consists in simultaneous recording, 
in one plane, of two or three particle images 
corresponding to projections of the particle onto the 
orthogonal planes. In Ref. 2 it was shown that for an 
arbitrarily oriented ellipsoidal particle the principal 
geometrical parameters can be determined from the 
parameters of projections (lengths and areas) onto two 
(ellipsoid of revolution) or three (triaxial ellipsoid) 
mutually perpendicular planes. 

In this paper we consider some possibilities of 
determining the principal dimensions of a particle as 
applied to a relatively simple case of dealing with two 
images. 

Let the images of a particle in the planes XOY 
and XOZ be known. These images (ellipses) obviously 
correspond to the projections of an ellipsoid onto the 
above-mentioned coordinate planes. The measured 
parameters are the lengths of projections, lx, ly, and lz, 
of the ellipses onto the corresponding coordinate axes 
and the areas Sxy and Sxz of these ellipses in the 
corresponding planes. 

Assume that the shape of a particle is described by a 
triaxial ellipsoid with the principal geometrical 
dimensions `, b , and q; then the measured parameters 
can be expressed through the ellipsoid dimensions as: 

 l2x = A2 t 2
11 + B 2 t 2

12 + C2 t 2
13 , 

 l2y = A2 t 2
21 + B 2 t 2

22 + C2 t 2
23 , 

 l2z = A2 t 2
31 + B 2 t 2

32 + C2 t 2
33 , (1) 

 S 2
xy = B 2 C2 t 2

31 + A2 C2 t 2
32 + A2 B 2 t 2

33 , 

 S 2
xz = B 2 C2 t 2

21 + A2 C2 t 2
22 + A2 B 2 t 2

23 . 

In Eqs. (1) parameters tik (i, k = 1, 2, 3) determine 
the orientation of the ellipsoid relative to the chosen 
coordinate system and can be expressed through the Euler 

angles3; besides, t 2
11 + t 2

12 + t 2
13 = 1; t 2

11 + t 2
21 + t 2

31 = 1, 
etc. 

In the case of an arbitrary relation between the 
dimensions `, b , and q, these relations are insufficient 
for unambiguous determination of the above-mentioned 
dimensions. So, let us consider a practically important 

case of a triaxial ellipsoid, which only slightly differs 
from an ellipsoid of revolution. This is can be an 
ellipsoid, in which two dimensions are close to each 
other, and the difference between them is much less 
than that between others. Assume for certainty that 
such dimensions are b  and q (b  > q), i.e.,  
(b 2 $ q2)/(b 2 + q2) = p2 << 1, and `2 $ b 2 > b 2 $ 
$ q2, or b 2 $ q2 < q2 $`2. Such an ellipsoid can be 
approximated by the ellipsoid of revolution with the 
equivalent radius Re0 and the height H0 = `, and  

R 2
e0 = (b 2 + q2)/2. 

As seen, the principal dimensions of an ellipse can 
be expressed through the measured parameters as: 

 2a 2
xy = l2x + l2y + [(l2x + l2y)

2 $ 4 S 2
xy/π2]1/2 ; 

 2b 2
xy = l2x + l2y $ [(l2x + l2y)

2 $ 4 S 2
xy/π2]1/2 ; 

 2a 2
xz = l2x + l2z + [(l2x + l2z)

2 $ 4 S 2
xz/π2]1/2 ; 

 2b 2
xz = l2x + l2z $ [(l2x + l2z)

2 $ 4 S 2
xz/π2]1/2 . (2) 

Obviously, the radius for the ellipsoid of 
revolution is determined by the coinciding dimensions 
in both planes: =xy = axz or bxy = bxz (the case that 
both of these equalities hold true should be considered 
separately). For the triaxial ellipsoid under 
consideration we take the following quantity as the 
radius (œmeasuredB): 

 R2
e = (a 2

xy + a 2
xz)/2 at a 2

xy $ a 2
xz < b 2

xy $ b 2
xz ; 

 R2
e = (b 2

xy + b 2
xz)/2 at b 2

xy $ b 2
xz < a 2

xy $ a 2
xz . 

The first relation for Re obviously corresponds to 
an oblate ellipsoid, while the second to a prolate one. 
The height (œmeasuredB) of the ellipsoid, as it follows 
from Ref. 2, is determined by the following equation: 

 H2 = l2x + l2y + l2z $ 2 R2
e . (3) 

Estimate now possible errors in determination of 
Re, H, and the volume V. We consider only the errors 
caused by unknown orientation of a particle (that is, 
we neglect the measurement errors). The starting point 
is determination (selection) of Re. It follows from 

Eqs. (1)$(2) that R2
e can vary from b 2 to q2 depending 
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on the orientation of a particle. So, the relative error 
(Re $ Re0)/Re0 = δRe/Re0 varies within 

 1 $ (1 + p2)1/2 ≤ δRe/Re0 ≤ 1 $ (1 $ p2)1/2 . (4) 

However, because p2 << 1, we have that 
⏐δRe/Re0⏐ ≤ p2/2. So, Re can be either smaller or 
larger than Re0 depending on the particle orientation. 

With δRe/Re0 known from Eq. (3) it is easy to 
find the relative error of determination of the ellipsoid 
height δH/H0 = (H $ H0)/H0: 

 1 $ [1 + p2 (2Re0/H0)2]1/2 ≤ δH/H0 ≤ 1 $ 

 $ [1 $ p2 (2Re0/H0)2]1/2 . (5) 

Here one can see a clear difference between the 
prolate (Re0 < H0) and oblate (Re0 > H0) ellipsoids. In 
the former case ⏐δH/H0⏐ ≤ p2(Re0/H0)2. In 
particular, if (Re0/H0)2 ≤ 1/2, then 
⏐δH/H0⏐ ≤ ⏐δRe/Re0⏐. Physically, this means that as 
the ellipsoid in Eq. (3) becomes more prolate, the role 

of 2R2
e decreases, and we actually determine a relatively 

large value at the above-indicated error of 
determination of its small component. It should be 
noted that the considered errors are not independent. 
Moreover, δRe and δH have opposite signs, that is, if 
we œunderestimateB Re, then we œoverestimateB H, and 
vice versa. 

The situation is quite different for an oblate 
ellipsoid. In this case we determine a relatively small 
value as a difference of two large values. It is clear that 
the errors in this case can be much larger. In particular, 
if p2(2Re0/H0)2 > 1 (that is `2 < b 2 $ q2), then at a 
certain orientation of the ellipsoid it may prove that 
the measured value H2 < 0, and δH/H0 is a complex 
value, what makes no physical sense. Therefore, from 
the practical point of view, the considered 
measurements are mainly applicable to prolate 
ellipsoids. 

Consider now the relative error of determination of 
the volume δV/V0, where δV = V $ V0; 

V0 = 4π `b q/3; V = 4π HR2
e/3. 

It is easily seen that for a prolate ellipsoid 

 1 $ [1 + 2p2(1 $ R 2
e0/H2

0)]
1/2 ≤ δV/V0 ≤ 1 $ 

 $ [1 $ 2p2(1 $ R 2
e0/H2

0)]
1/2 . (6) 

It formally follows from Eq. (6) that δV/V0 = 0 

at R 2
e0 = H2

0. However, on the above assumptions about 
the relation between the ellipsoid dimensions (`2 $ 

$ b 2 > b 2 $ q2) one can see that R 2
e0 /H2

0 ≤ 1 $ p2. 
Then, taking into account that p2 << 1, we obtain 

⏐δV/V0⏐ ≤ p2 (1 $ R 2
e0/H2

0). The minimum value 
⏐δV/V0⏐ ≈ p4 corresponds to a minimum prolation of 

the ellipsoid (the maximum value of R 2
e0/H2

0). In this 
 

case the errors δRe/Re0 and δH/H0 compensate for 
each other to a maximum degree, so that 
δV/V0 << δRe/Re0. It is clear that at p = 0 (ellipsoid 
of revolution) δV/V0 = 0, because we consider the 
errors caused only by unknown particle orientation. For 
an ellipsoid of revolution the orientation is insignificant 
in the problem under consideration. 

For a strongly prolate ellipsoid (R 2
e0/H2

0 << 1), as 
follows from Eqs. (4) and (5), δH/H0 << δRe/Re0, 

and δV/V0 = 2δRe/Re0 = p2 because V ∼ R2
e. 

Now let us present some numerical estimates. 
Assume that p2 ≈ 0.2 (that is q/b  ≈ 0.8), and  

R 2
e0/H2

0 ≈ 0.8. Then δRe/Re0 ≈ 0.1; δH/H0 ≈ 0.16; 
δV/V0 ≈ 0.04. If at the same value p2 ≈ 0.2 we 

assume that R 2
e0/H2

0 ≈ 0.5, then δRe/Re0 ≈ δH/H0 ≈ 

≈ δV/V0 ≈ 0.1. Finally, we have that if R 2
e0/H2

0

 << 1, then δRe/Re0 ≈ 0.1, δH/H0 ≈ 0, 
δV/V0 ≈ 0.2. 

Thus, for a particle having the shape of a triaxial 
ellipsoid, in which the closest principal dimensions 
differ insignificantly (for a particle differing only 
slightly from an ellipsoid of revolution), it proves to be 
possible to determine its principal dimensions, namely, 
the height and equivalent radius, from the parameters 
of only two images corresponding to the projections 
onto two mutually orthogonal planes. The errors of 
determination of these dimensions, as well as of the 
particle volume, due to the unknown orientation of the 
particle are determined by the parameter characterizing 
how greatly the particle shape differs from an ellipsoid 
of revolution. The errors of determination of the height 
and volume depend also on the ratio between the 
equivalent radius and the height. For an oblate 
ellipsoid these errors can be rather large. From the 
practical point of view, it is preferable to use the 
technique considered for analysis of prolate particles 
(threads, fibers) because the errors for them are not 
very large. 
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