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We consider the problem of remote sensing of the Earth’s surface through the atmosphere with
the account of contribution from the reflecting underlying surface using models of the Earth’s
atmospheric radiation. The mathematical model of radiative transfer in the atmosphere—surface system is
formulated as the optical transfer operator within the frames of the classical linear-system approach by
use of the method of influence function and spatial-frequency characteristics.

Introduction

Numerous experimental and theoretical
investigations into the solar radiation transfer in the
atmosphere—surface system (ASS) and self-radiation of
the Earth made it possible to achieve a reliable
knowledge about the radiation field of our planet.
Moreover, this also enabled establishing explicit and
quantitative connections between radiation
characteristics and optico-physical parameters of the
atmosphere and Earth’s surface that are responsible for
the radiation regime of the Earth and transfer
characteristics of the atmosphere in the systems of
vision and remote sensing.!725

First spectrographic experiments on observing
various types of natural formations on the Earth’s surface
in the visible spectral range (manned spacecraft Soyuz—7,
9, and 13, orbital stations Salyut, Salyut—3 and 5) and
combined  synchronous  sub-satellite  geophysical
experiments (Soyuz—7 and 9) were prepared and
conducted under the supervision of K.Ya. Kondrat’ev.
To reduce spectroscopic data collected from space to the
level of the underlying surface, the transfer function of
ASS was introduced and estimations of its components
were obtained using data of integrated ground support
experiments over the key areas of the territories surveyed
using spectrophotometry.26-30

At present, one can state that theoretical and
methodical basis for the correct account for the effects
of atmosphere as a scattering, absorbing, polarizing, and
refracting medium in remote sensing of the atmosphere
and Earth’s surface have been created. At the same time,
it is clear that, to increase the efficiency of space
technologies, it is necessary to continue theoretical
studies on interpretation, analysis, and generalization of

results of photography, spectrophotometry,
spectrography, tomography, videopolarimetry,
radiometry, telemetry, spectropolarimetry,
refractometry, visual observations, and, certainly,
optimization of measurements and experiments
themselves.
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One can distinguish between the following types
of radiation problems that make it necessary to take
into account the Earth’s surface. The first type includes
problems of energy and radiation balance of the Earth
when solar radiation serves as a source. These problems
are solved mostly in the approximation of a plane model
of the Earth’s envelope with an implicit allowance for
the contribution of a homogeneous Lambertian or non-
orthotropic underlying surface. The second type
includes problems of remote sensing of the atmosphere
and clouds with the Earth’s surface being the source of
interference. The third type involves problems of remote
sensing of the Earth’s surface when it is necessary to
eliminate (to perform atmospheric correction) or reliably
take into account the influence of the atmosphere.

A significant contribution to solution of the
problems on the account for atmospheric distortions in
processing the images of the Earth’s surface taken from
satellites ~was  made by  investigations by
V.V. Kozoderov.31734 The problem on the account for
horizontal inhomogeneities of a Lambertian surface in
the method of spherical harmonics for solving boundary
problems of solar radiation transfer in a scattering
atmosphere was stated in Ref. 34. Knowledge of the
spatial frequency characteristic (SFC) of ASS was used
as one of the tools to solve the boundary problem of the
theory of radiative transfer for the fluctuating
component of the solar radiation field in addition to the
boundary problem for the mean component of the
radiation intensity.22 Similar approach was formulated
in Ref. 35 with introduction of the SFC model
invariant with respect to variations of albedo and
illumination conditions. It uses numerical solution of
the complex equation of transfer by the iteration
method of characteristics.?6:15.36 The author of this
paper was first to calculate full SFC of the ASS for
slant paths of observation from the space as the input-
output and phase-frequency characteristic for realistic
models of a scattering and absorbing atmosphere.>6:15
Phase distortions that lead to image shift comparable
with the refraction shift, which was estimated by
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M.V. Kabanov,37 were studied theoretically and
numerically for the first time. Theoretical estimates of
amplitude-phase distortions of image transfer through a
turbid medium qualitatively coincided with the results
of the first one-of-a-kind experiment.38 The model for
transfer properties of the atmosphere was completely
formed as the optical transfer operator (OTO) for the
Lambertian surface.6.15,39-43

The first practical results of radiation correction
(i.e., correction of radiometric distortions by instruments
and influence of scattering and absorbing properties of
the atmosphere) for digitized images of scanning
satellite-based radiometers are presented in Ref. 44.
These results were obtained several years earlier than
analogous results in processing of the Earth’s images
taken from spaceborne platforms by foreign authors.
One more efficient algorithm of radiation correction
was developed and applied by the authors of Ref. 45.
The difficulties in the allowance for non-orthotropic
reflection of solar radiation by various natural
formations were studied in Ref. 46. The milestones in
the development of the atmospheric correction of
images taken from space have been described in
Ref. 47. These results and conclusions made up the
basis for modern methods and tools of spaceborne
physical geography.8:13.14,18,20,22.23

The linear-system approach

In every active or passive system of remote sensing
of the Earth’s surface, there are four main components:
scenario, scene, i.e., distribution of brightness of
observed objects or landscapes; the atmospheric channel
of image transfer; a device detecting electromagnetic
waves; a unit for image processing and recognition. The
influence of the atmosphere manifests itself in three
components: atmospheric optics mechanisms affect the
formation of scenario, the transfer of its image through
the medium, and are taken into account in radiation
correction in analyzing the scenes.

Since the variety of possible observation objects is
infinite, it is expedient to use a universal approach
which permits one to describe the whole observation
channel by objective characteristics invariant with
respect to particular structure of objects sounded,
conditions of illumination, and viewing. This approach
is widely used in classical optics, theories of vision,
electric circuits, optical-electron schemes, photography,
image processing, etc., and is known as the linear-
system approach.19:21,23

By the system one should understand everything
that realizes transformation of some input functions or
actions into some output functions or reactions
(responses). Systems’ reactions to input actions, due to
their similarity, can be described by certain generalized
characteristics whose definition does not depend on a
concrete form of a system (electrical, optical,
radiophysical, etc.). The generality means that the
functional relation connecting the input E(x, y) and
output ®(x, y) two-dimensional signals of the system

Vol. 13, No. 8 /August 2000,/ Atmos. Oceanic Opt. 693

®(x,y) = (0,E) = J j O, y, &',y )EG, y) da'dy (1)

—00—00

is of fundamental character and is well known as the
superposition integral that has meaning that the linear
system is fully characterized by the sum of its responses
to input actions; x, y are the horizontal coordinates. If
the condition of spatial invariance (isoplanarity) is
satisfied, the scattering function (SF) of the system or
the point spread function (PSF) O(x,y,x',y") depends
on the arguments’ difference and the functional (1)
takes the form of convolution

(x, y) = j J@(x — i,y — y)EQ, y) dedy. (2)

—00—00

By use of the theorem on the convolution of a
Fourier spectrum, the two-dimensional spectrum of the
output signal of the system B(py, p,) = FI®(x, y)] is
obtained as the product

B(va py) = l‘u(px’ py) V(pxr py)v 3)

where the spectral density of the input signal
(distribution ~ of  the object’s  brightness) is
V(py, py) = FIE(x, y)]. The spectral density of the
scattering function W(p,, py) = F[O(x, y)] is called the
transfer function of the system, or the optical transfer
function (OTF).

By use of the inverse Fourier transform, one can
obtain from Eq. (3) the value of the output signal of the
system (brightness distribution at the output of the
system)

®(x, y) = F1[B(py, p)1 = F[W(py, p) Vpy, p]. (4)

Therefore, the (optical) system realizes two-dimensional
Fourier transform of the product of the spectra of its
scattering function and input signal.

According to Eq. (3), OTF W(p,,p,) permits one
to establish a connection between two-dimensional
spectra of the brightness distribution in the object
plane and illumination in the image plane. Therefore,
the optical system is a linear filter of spatial
frequencies with a transmission coefficient W(py, p,). In
the general case, W(p,,p,) is a complex function

Lp(vapy) = A(px’py) exp [iB(px’py)]-

The module A(p,, p,) of a normalized OTF is called
the two-dimensional spatial frequency characteristics
(SFC), frequency-contrast  characteristic ~ (FCC),
amplitude-frequency response characteristic (AFRC),
function of modulation transfer (FMT), and dependence
of the phase B(py,p,) on spatial frequency is called the
phase-frequency characteristic (PFC). For a symmetric
PSF, the normalized OTF coincides with FCC and the
phase is B(py,p,) = 0. Formally, OTF is defined as a
two-dimensional Fourier spectrum of PSF. The FCC of
a system is the ratio of a contrast observed in the image
of diffusely luminous harmonic mire to the initial contrast
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depending on the mire’s frequency. The PFC of the
system defines the phase shift in the mire’s image.

For systems with cylindrical symmetry, Fourier-
Bessel or Hankel transform of zero order is used

00

D(v) = 2nj ®(p)Jo(2mvp)p dp.
0

The question on the advantages of one or another
characteristic of a system of radiative transfer is in fact a
question on the convenience of mathematical description
and applied trends of a particular investigation.

The conception of (optical) spatial filtration, i.e.,
manipulation with spatial frequencies aimed at changing
or transferring the image properties, is known for more
than 100 years after the study by Ernst Abbe.48 These
works exerted deep influence on the branch of science
that was later called Fourier optics.4® This branch
appeared at the frontier between classical optics and
theory of information. Abbe’s results directly led to
description of imaging optical devices as filters of
spatial frequencies of the object’s field.

The key point in developing optical methods for
image processing is connected with the publications by
N. Nyuberg>0:51 in the thirties and R.M. Duffieux>? in
the forties. Nyubergd® proposed to use expansion of
functions over the system of orthonormal functions as
the best linear approximation for analysis of the
problem of light and device. In Ref. 51, applying the
idea of expanding analytical functions into a series over
a complete system of orthogonal functions, Nyuberg
introduced the general principle of constructing spectral
devices. This paper exerted a significant influence on
the development of Fourier spectrometry.

Considering a generalized imaging system as a linear
filter, Duffieux established that energy distribution in
the plane of an object or of an image and in the plane
of the optical system’s pupil are connected through a
Fourier transform, and described distribution of light
intensity in the image plane as a result of light intensity
distribution in the plane of the object and point spread
function (i.e., pulse response). Duffieux’s ideas were
very fruitful49: already in the 50—60s, due to general
mathematical technique, it was possible to formulate
the main postulates of the theory of systems (linear and
nonlinear, invariant and spatially not invariant,
feedback systems, etc.); to establish analogies between
optics and the science about transfer of information,
between optical and electrical filters, between optics
and electronics, between increase of image sharpness and
equalizing the transfer function; to develop synthesis of
optical systems, coherent-optical and holographic
methods of information processing (rapid growth with
appearance of lasers); to try to control phase
transmission of spatial filters by use of polarization
methods and to control amplitude and phase transmission
by use of the holographic method; to turn to the
important problem of detecting signals by optical tools
on the background with use of non-coherent, partially
coherent, and coherent light; rapid growth was observed
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in adaptive optics (V.P. Lukin, 1986), optoelectronic
systems (M.M. Miroshnikov, 1977), image processing
theory (Yu.N. Pyt’ev, 1979, 1983, 1989; G.I. Vasilenko,
1985, 1986), information theory,22:23 etc. During a
decade, a large number of papers devoted to Fourier
analysis of optical imaging systems was published. Thus,
the basis for (mathematical) technique of the theory of
linear  systems  was  established  (A. Marechal,
M. Franson, 1960; E. O’Neill, 1963; J. Goodman, 1968;
A. Papoulis, 1968, et al.).

The basis for the theory of linear (two-dimensional)
systems is expressed in Eqs. (1)—(4).2! Spatial filtration
is performed by use of spatial and frequency spatial
characteristics. This technique of linear transformations
in spatial and spatial-frequency ranges wuse such
concepts as pulse action (instead of a pointlike source),
pulse response (instead of an image of a pointlike
source),2! and can be generalized for systems with narrow
and broad monodirectional beams. In particular, such
beams arise in the problems with the influence functions
at anisotropically reflecting surfaces.

We consider the atmospheric channel as an element
of an optical system of radiative transfer and formulate
the theory of optical transfer operator by use of the
mathematical apparatus of the linear-system approach.
The objective characteristics (point spread function,
optical transfer function, modulation transfer function,
spatial frequency characteristic, pulse transient function
(PTF), scattering function of a system, and other image
characteristics of reconstructing and transmitting
optical, optoelectronic, photographic, cinematographic,
television, radio-engineering, controlling, and other
systems) can be naturally extended to the theory of
radiative transfer in optically active media.

Mathematical formulation of the problem

Atmospheric radiation of the Earth is formed under
the influence of two ASS components. Connections
between radiation characteristics and parameters of the
atmosphere and the Earth’s surface are described by
solutions of the boundary problem of the theory of
radiative transfer in ASS when it is important to use
the theory of multiple scattering. The difficulty of the
problem is that the model of the medium depends on
many  parameters; processes of solar  energy
transformation and ways of viewing and measurements
are various. One has to deal with boundary problems
for an integro-differential kinetic equation describing
radiative transfer in absorbing, scattering, refracting,
emitting, and polarizing media with one-dimensional,
two-dimensional, or three-dimensional plane or spherical
geometry. The theory of transfer permits one to study
the influence of different factors on radiation propagated
in ASS and to obtain relations between -concrete
parameters of the medium and characteristics of the
radiation field. In this way one can determine
sensitivity of the spectral brightness, angular and
spatial structure of a radiation field, spatial distribution
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of density and fluxes of radiation under given
conditions of illumination and observation to variations
in the parameters.

We consider the problem of radiative transfer in a
scattering, absorbing, and emitting horizontally-
homogeneous plane layer which is not bounded in the
horizontal direction (- < x, y <o, rg=(x,y)) and
finite with respect to height (0 <z < &) in the three-
dimensional Euclidean space: the radius vector is
r=(x,y,z). The system “atmosphere — underlying
surface at the level z= /" is considered to be non-
multiplying (without duplication). The set of all
directions of radiation propagation s = (u,¢), where
M =cosd, & O[0, ] is the zenith angle counted from
the direction of the internal normal to the upper
boundary of the layer z = 0 (the normal coincides with
the z axis) and ¢ O [0, 2] is azimuth counted from the
positive direction of the x axis forms a unit sphere
Q=Q0"0Q; Qf and Q  are hemispheres for the
propagation directions of downward going, transmitted
radiation with p O [0, 1] and upward going, reflected
radiation with p O [—1, 0], respectively. The value
¢ =0 is taken in the solar vertical’s plane coinciding
with the plane passing through the x and z axes. The
solar flux is incident onto the upper boundary of the
layer z = 0 along the direction sy = (ly, dg) with the
zenith angle 9y O [0, /2], Yo = cos 8y, and azimuth
¢o=0. To write the boundary conditions in a more
convenient form, let us introduce the sets t = {z, rp, s:z =
0,s0Q%, b={z,rg,s:z=h,s0Q7}, whose labels
are taken from the words "top” and "bottom”.

Intensity (energy brightness) of radiation ®(r,s)
in ASS is sought as a solution of the general boundary
problem (GBP for R = 0) of the theory of transfer

K®=Fin, o|,=F, o|,=e¢rd+Ft (5)
with the following linear operators:
transfer operator

D = (s, grad) + o(2) = D, + D’airg H

0
D,=po-+ o(2);
integral of collisions

Sod= O'S(Z)J v(z,s,s") ®(z,rg,8") ds',
Q
ds' = dy'd¢’, S(1) <1;

operator of reflection

[R ®1(h, 1o, 5) = I q(rg, s, s7) ®(h, 1o, sT) dst, (6)
Q+

which is uniformly bounded: R(1) = ¢*(rg, s) < 1; the

integro-differential operator K =D —S; the one-

dimensional operator K, = D, — S; y(z, s, s') is the phase

scattering function; 0(z) and o,(z) are vertical profiles
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of the coefficients of attenuation (extinction) and
scattering; q(rg, s, s*) is the kernel of the reflection
operator; the parameter 0<e<1 represents the
interaction between radiation and the underlying surface;
Fin(z,s), FO(rg, s*), F(rg, s7) are sources of insolation
(the external solar flux, self-radiation of the medium).

The boundary problem (5) is linear and its solution
can be sought as a superposition ® = &, + ®,. The
background radiation of the atmosphere @, is determined
as the solution of the first boundary problem of the
theory of transfer (FBP) with vacuum boundary
conditions

Kb, = Fin, ®,|,=F, @,,=F" (7)

for a layer with transparent or absolutely black (non-
reflecting) boundaries (R =0). It can contain three
o= O+ @0 + @ Each of
the components can be calculated separately as a
solution to the FBP (7) with the sources Fin, FO Fh
respectively.

The problem for illumination ®, caused by the
effect of reflecting underlying surface is the GBP

background components:

Ko,=0, @, =0, o,,=cRd,+eE, (8)

q
where the source E(rg, s) = R®, is the brightness
(illumination, irradiance) caused by the background
radiation.

The general boundary problem (5) for a plane
layer is a mathematical idealization of radiative transfer
in scattering, absorbing, and emitting media. It describes
real radiative processes in ASS sufficiently adequately.
The variety of underlying surfaces (without regard to
elevations and orography) which is described by the
operator (6) and boundary sources can be grouped into
four main types (or their combinations): horizontally-
homogeneous isotropic; horizontally-homogeneous
anisotropic;  horizontally-inhomogeneous  isotropic;
horizontally-inhomogeneous anisotropic. If at least one
of the functions FO, F%, g depends on 7y, the solution
of GBP (5) is determined in a five-dimensional phase
volume (x,y,z,9,¢) and GBP is not solvable by
numerical methods without restrictions on the horizontal
dimensions of the layer. Solutions of a three-dimensional
GBP refer to the class of generalized solutions.

There exists whole branch of mathematics dealing
with calculations of fundamental solutions of partial
differential equations by Fourier method. An important
part played the suggestion referred to the equation of
transfer in the textbook on mathematical physics
written by Acad. V.S. Vladimirov for Moscow Physico-
Technical Institute.>3 Theoretical constructions and
calculation algorithms for the optical transfer operator
are based on the theory of generalized solutions, theory
of integral transforms of distributions and series of the
general theory of regular perturbations (asymptotic
method). The approach developed on the basis of
rigorous mathematical foundations is called the method
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of influence functions and spatial frequency
characteristics (IF and SFC method).>6:15.54.55 In the
theory of generalized solutions, IF is the fundamental
solution of FBP and GBP. It is a universal
characteristic of a radiative transfer system, invariant
with respect to concrete values and structure of
radiation sources and parameters of reflection of the
boundary. The term includes the whole variety of well
known terms: SF, PSF, PTF, Green’s function, etc.
and methodologically unites one-, two-, and three-
dimensional boundary problems. The term SFC is
introduced as a two-dimensional Fourier spectrum of
the SF by the horizontal coordinates. Identity of the
concepts of SFC, OTF, MTF, FCC, etc. is evident.
Note that IF and SFC can depend on several variables
considered as  parameters.  A.S. Monin®  and
B.B. Kadomtsev3? were the first to apply the IF
apparatus in the theory of transfer. The series of the
general theory of (regular) perturbations (asymptotic

theory) are being employed for rather a long
time. 15,25,54,55,58-61

Influence functions of the boundary
problem in the theory of transfer

Let us consider a FBP

Ko=0, o|,=0, o|,=f"rs. (9

The parameter s” 00 Q™ can be absent. The problem (9)
corresponds to a linear ASS and its generalized solution
is represented as a linear functional, i.e., the
superposition integral

(s, z,rg,8) = P() =(O, ) =

1
= —j ds), J (s, z, rp—rh, 8) fsh, vl s,) drf, (10)
Q- —00

whose kernel is the IF ©(s), z, rp, s), i.e., the solution
of FBP

Ko=0, ©|,=0, ©|,=Ffs (11)

with the parameter s, 0 Q  and source f5(s, 7o, s) =

=3(ry) &(s —s;). In fact, the IF © describes a
radiation field in a layer with non-reflecting
boundaries. The field is created due to processes of
multiple scattering of a stationary narrow beam
propagated along the direction s;. The source of the
beam is at the boundary z =/ at the origin of the
system of horizontal coordinates x, y.

If the source f(rp) is isotropic and horizontally
inhomogeneous, the solution of FBP (9) is sought using
a linear functional-convolution

®(z, 10, 8) = PAf) = (O, ) =

= J ©,(z, ro—rl, Hf(rL) dr, (12)

—00
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with the kernel

1
0,(z,ry,5) = 2—1_[[ (s, z, 7, 8) ds),. (13)
o

IF ©, coincides with PSF and satisfies FBP

KO©,=0, 0,],=0, 0o],=30y. 14)
In the case of an anisotropic and horizontally
inhomogeneous source f(s”, s), the solution of FBP (9)

is determined by the linear functional

(s, z,5) = P(f) =(O,, f) =
= %{ J 0,(s), z,8) f(sh,s;) ds), 15)
o

with the kernel

0,(s,, z,5) = j (s, z, ro, s) drp. (16)

—00

IF ©, is the solution of the one-dimensional FBP

KZG)Z:O, Oz|t= 0, ®z|b:6(«5‘_5;) 17)
and describes the radiation field formed in the layer
onto the boundary z =/ of which an outer parallel
wide flux is incident along the direction s, O Q7.
FBP (17) is similar to the usual problem for a one-
dimensional plane layer illuminated by the solar flux.

For an isotropic and horizontally homogeneous
source, the solution of FPB (9)

®(z,s) = fW(z,s), [ = const, (18)
is calculated by KF

00

1
Wi(z,s) = m J ds, J- (s, z, rg, 8) drg =
Q- —00

00

1
- J 0,(z, o, 8) dm=§[j 0.(sy, 2,8) ds, (19)
—o0 Q-

which is also called the transmission function
complicated by the contribution of multiple scattering
and is determined as a solution of the one-dimensional
FBP

KW=0 W|,=0, W|,=1. (20)

The relations (13), (16), (19) can be used as accuracy
criteria in calculation of KF ©, ©,, ©, by solutions of
simpler FBP (14), (17), (20). Functionals (12), (15),
(18) are particular cases of the functional (10). The
influence functions ©, ©,, ©,, W form a complete set of
basic models of fundamental solutions of the first and
general boundary problems of the theory of radiative
transfer in a plane layer and objective invariant
characteristics of a linear ASS.
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Spatial-frequency characteristics

By use of Fourier transform with respect to the
horizontal coordinate » 5 we obtain that

9(p) = FIf(ro)] = J f(ro) exp [ip, ro)] drp,

B = F[], 1)
where the spatial frequency p = (p,, p,) takes only real
values (- < p,, Py < ), in the class of tempered
distributions,>3 FBP (9) can be reduced to FBP for the

parametric one-dimensional complex equation of
transfer (CFBP):

L(pB=0, B|,=0, Bl,=g("p s (22)

with the linear operator
L(p) =D, —i(p,sp) = S;
(p, s0) = py sin 9 cos ¢ + p, sin & sin ¢.

The solution of CFBP (22) is represented as a linear
functional

B(sh, z,p,s) =N(g) = (¥, g) =

1 T — —
=om J W(sy,, 2, p, 8) gty p,s;) dsy,. (23)
o
The kernel of Eq. (23) is SFC W(s),z,p,s) =

= F[O(s),, z, 75, )] with the parameters s; 0 Q™ and p
is the solution of CFBP

Lpw=0, w|,=0, ¥|,=g, (24)

This CFBP is obtained as a result of applying the
Fourier transform (21) to FBP (11)

95(s $) = Flfe(sy, 1o, 91 = 8(s = 5.

Together with the SFC model W (24) for the case
of a horizontally inhomogeneous and anisotropic source
in FBP (9), the set of basic models includes SFC

1
W,(z,p,s) = F[O,(z, g, 8)] = Py j W(s,, z, p, s) ds),
o

which satisfies CFBP

Lpw, =0, W[, =0, wl|,=1, (25)
when the source in FBP (9) is isotropic and
horizontally inhomogeneous.

The following relations are valid: if W= F[O],
then © = F-1[W]; if g = F[f], then f= F![g]. We
obtain the following connections for the functionals:

N(g) = FIP(N1; PN = FIN(P].
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The optical transfer operator

Based on the general theory of regular

perturbations, one can use the series

qu(S”l, z,1p,8) = Y ek,
k=1
to reduce GBP (8) to a system of recurrent FBP of the
type (9)

Kb,=0, ®,=0, @, =E, (26)

with the sources E, = R ®,_ ¢ for k=22, E;=E. The
following operation describes interaction of radiation
with the boundary by the IF ©:

[Gf] (%, h, rg, ) = R(O, ) = J q(rg, s, s) (O, P ds™.
Q+

Solutions of the system of FBP (26) are obtained
as linear functionals (10)

®; = (0, E),
®, = (0, R®, ) = (O, Gk~ 1E).
An asymptotically exact solution of GBP (8) is

obtained in the form of a linear functional (10), i.e.,
the optical transfer operator

®,=(0,Y), Q7

where the scenario of the optical image or brightness of
the underlying surface

Y=Y GE=3 R®, R®=E, (28)
k=0 k=0

is a sum of the Neumann series over orders of radiation
reflection for the base with the allowance for multiple
scattering in the medium. The following majorant
estimate is valid:

IE] 3 q+/|P
1_6]*6*_1 _Q*C*7

IVl 3 IR @l <[E[ 3 (gecs) =
k=0 k=0

gl = vrai sup [y < gt~ ek E],
z,10, S
IRC(DI| < vrai sup J lg(rg, s=, s ds* = g« < 1,
7o, S ar
P(1) = W(z,s), |[[P(D|<sup W=c«<1.
z,S8

The scenario satisfies the Fredholm-type equation

of the second kind
Y=R(O, Y)+E, (29)

which is called the equation of “near-land
photography“.45 In the general case R(O, Y) #

#(R ©, Y). The total radiation of ASS and space
photography are described by the functional
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®=0a,+ (0, V). (30)

In terminology of Fourier images (21), the
components of the perturbation series

By(sh, 2, p, s) = FI®,(sh, 2,1, )] = 5 €k By,
k=1

By, = F[®,], (31)

satisfy a system of recurrent CFBP of the type (22).
The Fourier image of the reflection operator (6) is
determined by the following formula (v = F[q]):

[TBI(h, p,s) = FIRD] =

1 o)
= )2 J dp' J vip-p',s,s) B(h,p',st) ds'.

o o+

The operation of interaction between radiation and
the boundary is introduced by the SFC:

[Qg] (sh, h, p, s) = FIGf]l = T(W, g) =

00

- (2;)2 J dp’ I v(p = p',s,s7) (W, ¢) ds™.

—o00 Q+
The terms of the series (31) are obtained as linear
functionals (23)
Bi=(, V), Br= (W, TB,_) =¥, Ok~ 1V);

V = F[E].

The sum of the series (31) (the Fourier image of the
asymptotically exact solution of GBP (8) in the class
of tempered functions) is the linear functional (23)

B, =¥, 2), o,=F ¥ 2). (32)
The Fourier image of the scenario is the sum of
the Neumann series over the orders of radiation reflection

from the underlying surface (in the terminology of
Fourier images)

FIY|=Z= % QkV = § TBy. (33)
k=0 k=0

IF O(s),, z, g, s) and SFC W(s,, z, p, s) are used to
solve GBP (8) with the following set of pairs of
functions of the source and characteristic of reflection:

E(rg, s), q(ra,s,8'); E(rg,s), q(s,s);
E(s), q(rg,s,8); EGrp), q(rg,s,s);
E(r), q(s,s); E, qlrg,s,s).

IF ©,(z,75,s) and SFC W,(z, p,s) are kernels of
the functionals when the source and reflection
parameter form the following pairs:
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EQrg, s), q(rg, s'); EGpg,s), q(s); E(s), q(rg,s);
EGrp), qGrg,s); E(ro), q(s); E, q(rg,s").

By use of IF ©,(s;,z,s) one can determine the
functionals in the case of the following sources and
reflection parameters: E(s), g(s,s'); E, q(s,s'). By IF
W(z,s), one can find the solution for the pair E, g(s").

The functional (27) is a mathematical model of
radiative transfer in ASS. It is adequate to the initial
GBP (8) for different structures of the source E and
types of the underlying surface regardless of the ASS
dimensionality (one, two, or three-dimensional). Instead
of calculating the series over the reflection orders in the
full phase volume of the GBP problem (8), it is
sufficient to calculate a finite Neumann series only for
the scenario at the boundary z =% (28). Spatial and
angular distributions of the contribution of illumination,
i.e., solutions of GBP (8), can be sought by use of a
linear functional, OTF (27). In the presence of
horizontal inhomogeneities on the Earth’s surface, one
can use OTF in the form of the functional (27) with
the kernel being IF or (32) with the SFC as the kernel.
Here IFs are calculated either directly (for instance, by
the Monte-Carlo method), or using the small-angle
approximation,62765 or by SFCs considered as solutions
of CFBP (24) or (25). Different schemes of OTF
and structuring of the total radiation field of ASS (30)
(see Refs. 5, 6, 8, 11, 18, 22, 43, 45, 47, 66, 67) differ
either in the representation of the scenario (28) (or (33))
or in methods of solving the equation (29). 1.V. Mishin%6
could not solve the problem for an anisotropically
reflecting underlying surface, and A.A. Ioltukhovski®8
drew on the results by T.A. Sushkevich and, trying to
re-expose them, committed gross mathematical errors.

Within the frames of the strict theory of OTF
and linear-system approach, the method of IF and
SFC is generalized for problems that allow for
polarization9-73 and for two-medium systems of transfer
(atmosphere—ocean, atmosphere—cloudiness, atmosphere—
hydrometeors, atmosphere—plant cover) with an internal
separation boundary, 74779 and horizontally
inhomogeneous atmosphere.> 154,42 Note that the
transfer characteristics of ASS with the allowance for
polarization were first studied by K.Ya. Kondrat’ev and
O.I. Smoktii.80 An outstanding contribution to the
solution of the problem of polarization contrast was
brought by G.V. Rozenberg,8! T.A. Sushkevich and
S.A. Strelkov,!> researchers from the Institute of
Atmospheric Optics, Siberian Branch of the Russian
Academy of Sciences.2!

Finally, the initial GBP (8) is reduced to a linear
functional, and the linear-system approach to solving
problems of remote sensing of the Earth’s surface is
formulated. The approach precisely defines the
manifestation of nonlinear effects caused by multiple
reflections from a surface in the “scenario“ formation.
These effects are described by linear transfer
characteristics of an isolated layer of the atmosphere.
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Main problems of three-dimensional
transfer

First of all, problems of radiation correction are
solvable if and only if the three-dimensional boundary
problem for a plane layer infinite along the horizontal
coordinates is solvable. The problem cannot be solved
without measures to restrict the infiniteness. So, in first
works, PSF was simulated by the Monte-Carlo method
(G.A. Mikhailov, B.A. Kargin, G.M. Krekov,
V.V. Belov, D.A. Usikov, et al.) which, as known,
showed a good performance in local calculations; by
small-angle approximations (L.S. Dolin,
L.M. Romanova, E.P. Zege, V.S. Remizovich,
V.V. Veretennikov, et al.); by passing from a differential
problem to an integral equation (E.S. Kuznetsov,
M.S. Malkevich).

The approach based on the generalized solutions
and integral transforms of distributions and, as a
corollary, the method of IF and SFC appeared to be a
powerful mathematical apparatus. As a result, instead
of the unsolvable initial boundary problem, a new
mathematical model of three-dimensional radiative
transfer is constructed in the form of functionals whose
kernels are IF and SFC, depending on the form of the
representation. These bases made it possible to develop
a unified, mathematically rigorous theory for
description of systems of radiative transfer in different
applications and with different geometry (one-, two-,
three-dimensional plane and spherical problems).

Second, to solve problems of remote sensing
(vision, image transmission, etc.), it is desirable to
establish an explicit connection between the solution
and parameters of the transfer system (or coefficients
and sources of the boundary problem). IF and SFC are
invariant characteristics of the system of radiative
transfer with respect to sensed (or observed, or
perturbed) parameters. The constructed functionals
were called OTF because they (if following the physics
of phenomenon) describe radiation transfer from the
objects sounded through turbid scattering and
absorbing media to a receiver.

Third, in practice, all the one-, two-, and three-
dimensional observation problems are realized within
the frames of the linear-system approach (including the
problems in holography and tomography), which lays
in the base of models for inverse problems. The
difference between concrete approaches is in the way by
which nonlinear effects and noises are taken into
account. It was possible to represent all the nonlinear
approximations by linear IF and SFC, and to reduce
OTF to a linear functional whose kernel is either IF or
SFC, and the scenario takes into account all the linear
and nonlinear effects.

By use of the unified concept of SFC as an
amplitude-frequency and phase-frequency characteristic
of an object, of an atmospheric channel, of a
measurement device, of an image, and so on, and by the
formulated set of radiation characteristics of systems of
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radiative transfer, a software for imitation simulation of
a high-resolution spaceborne system was realized for the
first time under the supervision of T.A. Sushkevich
with the assistance of S.A. Strelkov.

Conclusion

Thus, the investigations carried out made it
possible to obtain fundamental results in the theory of
OTF. First, OTF is formulated on the unified
methodological basis for the whole variety of angular
and spatial structures and characteristics of reflection
and radiation sources. Second, all the nonlinear
approximations are represented by linear IF and SFC.
Third, a full set of base models for IF and SFC is
determined. It is necessary and sufficient for describing
transmission characteristics of a system of radiative
transfer. Fourth, the OTF is constructed in a
mathematically rigorous way and physically correctly
within the frames of the linear-system approach. The
theory of OTF presented here describes the well known
Russian and foreign theoretical results.

The method of IF and SFC is a universal
mathematically strict approach to solving problems of a
wide range of applications. Interpretation of methods
developed by different authors as realizations of the
method of IF and SFC permits one to obtain unified
basic formulas for a wide class of applied problems. For
these problems, the methods, tools, approaches
introduced by different authors are in fact either
equivalent, differing only in schemes of realization, or
close to each other. So it is not expedient to personalize
these methods, which became almost classical. For more
details of algorithms, the reader is referred to original
sources whose bibliography consists of more than 800
publications and can be found in Ref. 25. In different
applications a particular, special, applied terminology
was established. This complicates establishing the
generality among the fields and restricts possibilities of
using most advanced results from adjacent branches. At
present, when theoretical and numerical investigations
are performed on a mass scale due to accessibility of
computers, manipulation with mathematical objects
makes it necessary to use universal, generalized
mathematical terms and concepts. In empirical
theoretical and calculation investigations on computers,
almost each investigator introduces his/her own
terminology in the same field. This creates a false
impression of the methods developed as of unique ones.

As seen from analysis of the state of the problem
on the allowance for the Earth’s surface and its remote
sensing, the whole variety of approaches can be reduced
to three main ones. The implicit way to take into
account the underlying surface was first to appear. The
second approach is the explicit way by the method of
IF and SFC. The third approach is connected with
functionals and conjugated equations.5! The term IF
unites all types of singularity and diffuseness of a
source and all the four types of surfaces. The term SFC
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means two-dimensional Fourier spectra in a horizontal
plane, including those of IF. In particular, when one
takes a Fourier spectrum of PSF, the SFC is sometimes
called the OTF or MTF.3,11,19,21,66

The generality of the technique described is that it
can be spread for different ranges of wavelength
spectrum and conditions of remote sensing. It is
important that the scenario and the atmospheric
channel would be considered within the frames of the
theory of radiative transfer. In particular, this refers to
the quasi-optic approximation for the range of
millimeter waves. It is preferable to avoid frequent use
of the term “optical“ which narrows the applicability.
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