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A theoretical approach is developed to solve the problem of nonstationary elastic light scattering
by a dielectric spherical particle. This approach proposes optical fields of the scattering radiation to be
represented as an expansion in terms of eigenfunctions of the stationary problem, in which the expansion
coefficients determine the temporal behavior of the field and comply with inhomogeneous oscillation
equations. Transient processes at formation of optical fields in a microparticle are studied. It is shown
that nonstationary pulse scattering manifests itself, first of all, in the time shift of maximum of the
internal field relative to the profile of the initial pulse and in the time delay of its trailing edge. This
behavior of nonstationary fields is connected with the resonance character of the process of elastic light
scattering by a particle, in which vibrational eigenmodes of the internal optical field with lifetimes
comparable with or much longer than the laser pulse duration are excited.

In spite of almost century-long history, the
problem of elastic linear scattering of optical radiation
by dielectric spherical microparticles remains urgent by
now. It is known that the basic principles of this theory
formulated still in papers by Debye! and Mie? and then
developed in Refs. 3—6 are concerned with diffraction
of a plane monochromatic light wave at a particle
under stationary conditions.

As applied to the process of elastic light scattering
by a particle, the condition of stationarity means that
the time of establishment of optical fields in a particle
and beyond it is much shorter than the duration of the
diffracting radiation pulse and, consequently, the
establishment of optical fields can be considered as
instantaneous. At the same time, light scattering, as
any other physical process, always has nonstationary
phases in its development. This circumstance is
especially important in connection with promises of
applying ultrashort laser pulses in aerosol optics.” In
such time scales, the nonstationarity of the scattering
process becomes comparable with the duration of a
radiation pulse.

The studies of the temporal and spectral structures
of the field of elastic scattering by weakly absorbing
spherical particles8 revealed the existence of free
electromagnetic oscillations in dielectric spheres, whose
frequencies are determined by the particle size and
optical properties. If the frequency of the incident
radiation coincides with the frequency of some particle
eigenmode, an internal optical field is resonantly
excited, and the spatiotemporal distribution of this
field is completely determined by the field of the
excited mode. Characteristic lifetimes 15 of the highest-
Q resonances (whispering gallery modes) in micron-
sized particles usually lie in the nanosecond region.?
Thus, if the length of the initial radiation pulse is

0235-6880,/02,/08 619-09 $02.00

comparable with and shorter than the time tg, then its
scattering by a particle may have the nonstationary
character.

Theoretical investigations of nonstationary light
scattering are based on solutions of Maxwell's
equations in their complete form with allowance for the
temporal variability of the fields. A well-known
approach to solution of this problem is the method of
the spectral Fourier analysis. 19713 It allows the problem
on nonstationary scattering of a pulse with a spectral
distribution to be reduced to scattering of a set of
monochromatic Fourier harmonics. In this case, particle
scattering properties are characterized by the so-called
spectral response function, which is a traditional Mie
series written for all frequencies of the initial pulse
spectrum. The scattered and internal fields are written
in the form of the convolution integral of the pulse
spectrum and the spectral response function of the
particle.13  The analytical solution of this light
scattering problem was obtained only for some
particular cases (optically small particles!0), when the
spectral response function has a quite simple form.
Some numerical solutions of this problem that describe
the behavior of the internal!!:13 and external!? fields of
the scattered wave were obtained as well.

Among various numerical methods, to be noted is
the finite-difference time domain method, which is, in
fact, the direct numerical solution of the nonstationary
Maxwell equations.!4:15 It is worth using this method
in calculations of light diffraction at objects having a
complex geometry, as well as inhomogeneities in their
optical properties.

In our previous papers,%16 when studying the
nonstationary problem of nonlinear light scattering in
micron-sized particles, we justified the approach being
under development in laser optics.17:18 1In this
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approach, it is proposed to seek the solution in the form
of expansion in terms of eigenfunctions of the linear
problem of stationary scattering (resonance modes of a
sphere). In this case, the spatial and temporal
dependences of the fields are factored so that all
information about the time behavior of the scattered
field is in the coefficients of the expansion series. The
system of differential equations being, in essence,
inhomogeneous equations of oscillations can be written
for them based on the Maxwell equations. If a
particular profile of the initial pulse is specified, this
system can be then solved analytically or numerically.

The aim of this work is theoretical investigation of
the nonstationary elastic linear scattering of light by a
dielectric microparticle based on the field expansion in
terms of its resonance modes. Our tasks are the detailed
description of the method, derivation of equations
characterizing the main features of nonstationary
scattering, and  numerical = computations  that
quantitatively characterize the process under study.

The Maxwell equations describing nonstationary
elastic linear scattering of light have the following
form:

rotE(r; t) = —1QH(r; );
cot

rotH(r; ¢) = a8 E(r; ) + 4£E(r; t), 1)

c ot c

where E(r; t) and H(r; t) are the electric and magnetic
field vectors, respectively; €, and ¢ are the permittivity
and conductivity of the particle substance; ¢ is the
speed of light in vacuum. We consider here the
complex representation of the fields.

Representation of the spherical particle as an open
optical resonator allows the solution of Egs. (1) to be
sought in the form of expansion in terms of the system of
eigenfunctions of such a resonator E;;:‘TH (r), Hg;:’TH (r)
describing the spatial profile of the fields of vibrational
eigenmodes of TE and TH polarizations!9:20;

E(r; t)=ZZ[Anp (DETE()-iB,, (OEI(D)];

n=1 p=1

H(r; =2, Y lid,, OHJF (0)+B,, OHI®)], (2)

n=1 p=1

where still unknown coefficients A,,(t) and B, (¢)
reflect the time behavior of the field. As is well-known,
the functions E,;, and H,,, themselves form an orthogonal
system, comply with the Maxwell equations (1):

()
. Pup
i &

—H

£,0
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rotE,, = - np

C

with the eigenfrequencies ©,,, and can be expressed
through the vector spherical harmonics M,,,(r, 6, ¢)
and N,,,(7, 0, ¢0):
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EZ;])‘: = Cnp (xnp )an (7’, 0, (P);

Ezglzdnp(xnp)an(r)ev(P);
HZ;];: :dnp(xnp)an(rvev(p);
HZ[I)—I :Cnp (xnp )an (7,9,(P)7 (4)

where x,, = oy,a/c is the resonance parameter of
diffraction of the particle with the radius g, and the
scale parameters ¢y, and dy, are determined from the
condition of unit normalization of vector harmonics.
The specific equations for the functions M,,(r, 8, ¢)
and an(r, 0, ¢), as well as their main properties are
given, for example, in Ref. 20.

Prior to further consideration, let us give some
notes concerning the form and applicability of the
series (2) to solution of the problem analyzed.

1. The main feature of a dielectric particle as
compared to traditional metal-wall resonators is its
openness. This term means that the electromagnetic
field of eigenmodes is nonzero on the particle surface
and exists beyond the particle as well. As a result, the
resonator  eigenfrequencies ®,, become complex:
Opp = Oy ~ 1 @y, With the real part determining the
frequency of oscillations of eigenmode fields and the
imaginary part bearing the information about the
amplitude of the outgoing field.!8 In this connection,
far from the particle » >>1 the harmonic part of the
scattering wave exp{i 0, r/c} leads, apparently, to the
infinite growth of its amplitude. Therefore, strictly
speaking, the use of the system of eigenfunctions (2)
for description of fields in open resonators is incorrect.
However, since the imaginary part of the frequency m','Lp
is determined by the parameter of the radiation Q-

factor pr (Ref. 9): oy, ~ 1/Q§p, whose characteristic
values in transparent micron-sized particles are usually
of the order of fop~ 106-1015, at r <<c¢/ oy, the
series (2) can be thought converging within the partial
zone. 2!

2. It is worth representing electromagnetic fields
in the form (2) only when the functions, in terms of
which they are expanded, are known. The use of
spherical vector harmonics (4) as generating functions
imposes certain restrictions on the spatial profile of
particle permittivity, namely, we assume g, = const at
r < ag. The fact that g, is spatially varying within the
particle volume requires the problem for eigenfunctions
of such a system to be solved before expansion, but this
is a nontrivial problem. However, in some cases, for
example, in the case of radially inhomogeneous
particles consisting of concentric layers with different
values of g, it is possible to construct the system of
eigenfunctions  similar to Egs. (4), but more
cumbersome. 6,22,23

Another obvious restriction of the considered
approach to solution of the problem is a neglect of the
frequency dispersion of the dielectric permittivity,
because the form itself of the field expansion (2) in the
presence of the dependence g,(w) contradicts the
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requirements of physical validity of the eigenfunctions (4).
It should be noted that, although this circumstance
reduces the domain of applicability of the series
expansion (2), the cases, in which the allowance for g,
dispersion is significant, are rather rare in practice, if
only we do not consider strong spectral resonances of
the particulate substance.

3. Natural  oscillation  frequencies  ©,, are
determined from solution of the Dirichlet problem for a
spherical zone V (see, for example, Refs. 18 and 19).
In the case of an ideal sphere, they, as is known, are
characterized by only two indices (besides the wave
polarization TE or TH): the mode number n (angular
index by the coordinate ) and order p (radial index by
the coordinate 7). In the azimuth direction (by ¢), the
eigenfrequencies of the sphere are degenerate. Because
of peculiarities of the spherical Bessel functions
characterizing the radial behavior of the field of natural
oscillation of a sphere, it is impossible to obtain the
exact analytical equation for ,,. Only approximate
formulae are known.!824 They were obtained by
approximation of the spherical Bessel functions at large
values of the argument by the Airy function. Using
them, we can calculate eigenfrequencies of a dielectric
sphere.

4. The boundary conditions on the surface of a
spherical particle consist in continuity of the tangential
components of the fields Eg, and Hg, at transition
through the surface:

_ S i . _ IS
Eem _Ee,w +E9,<|>’ H91<P _He,w

“Hy,, ()
where the superscripts s and i stand respectively for the
scattered and incident fields. But the normal
components of the fields experience a jump
proportional to  the relative refractive index
m = m,/my, where m, and my are the complex
refractive indices of the particle and the ambient
medium, respectively. This circumstance prevents from
the direct use of the field expansion (2) under the rot
sign. Instead, the correct approach is expansion of the
functions rotE(r; t) and rotH(r; ¢) in terms of Eqs. (4)
and derivation of the equation for the temporal
coefficients of the expansion.

For simplicity, the further consideration is
conducted for waves of some particular polarization, for
example, TE waves and, respectively, for the
coefficients A,,(¢). It should be noted that because of
symmetry of the Maxwell equations, the resulting
equations for B,,(¢) are similar.

Following Ref. 17, let us multiply the first of

Egs. (1) by H:lp from the right and integrate over the

particle volume Vj, taking into account Eq. (3), as
well as  orthogonality and normalization of
eigenfunctions:

J'(rotEH;p )dr= J(ErotH;p Ydr +

Vo Vo
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+ IEanp]-n,ds:—z anp Ay (O +
c
So
* € d
+ J.[EXan]'nrdSZ—TfZEAnp(t)y (6)

So

where dr = 72sin8drd0do; ds=agsin9d9d(p; n, is the
external normal to the particle surface; Sy is the surface
bounding the volume V. Then make the same
operation with the second equation of Egs. (1), but

*

multiply it by E,, :

j(rotH-E;p)drz J'(H.rotE;;,,)dH J[Hfozp}n,ds:
Vo Vo So

Joo

o
:—%Anp(tﬁ j[HxE;p]-n,dsz
So
&g d
c dt

Ay (t)+4$A,w<t> . ©)

Differentiate Eq. (7) with respect to time and in
place of the derivative %Anp(t) substitute its

expression from Eq. (6). After re-grouping of terms, we
obtain the following equation for the coefficients 4,,:

d? 4mo d 2
FAHP (t)"rwAnp (t)'HanAnp (t)zl_lnp (t), (8)

where

I,,, ()= J.{mnp[ExH;p] —ia[HxE;p]}ds . (9)
€4 ot
So

In its meaning, Eq.(8) is the equation of
oscillations, in which the driving force is represented
by a combination of the surface integrals TI,,(¢).
Determine their form using the boundary condition (5).

Then we obtain

an(t):_sz_c J.{(an [ESXH;p] -
al g
So

. 0 s * i
_ Za[H xEnP]}ds}-an(t). (10)

Here F,}p (t) has the form similar to the first term, but

with the field of the incident radiation in place of the
field of the scattered wave in vector products.

After simple transformations, the first term in
Eq. (10) is expressed through the radiation Q-factor of

the particle Q,Isn at the eigenmode frequency:

nnp@)_zimgmA,,,,(t)[1+2;R]+Fni,,<t>, (11)

np

where
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OR = 0,,W,,/ P, (12)

and the energy stored in the mode W,, and the
averaged power of radiation loss through the particle

surface Pnlf, have the following forms:

1 . .
W, = l6m I(SaEannp+anan)dr; (13)
1A
P e SﬁEipX<Hzp>*1ds S e
0

After substitution of Eq. (11) into Eq. (8), we
obtain
d2 (an d
—A, O+———A4,,{)+
ez "o, de ™

2
{QHP[HQLRH Ay, (O=F,, @), (15)

np

where, similarly to Eq. (12), the Q-factor of the
resonance mode Qj, caused only by thermal loss in the

particulate substance can be expressed through the
thermal loss power P, :

Prfft) = I%(En7) 'E:zp )dr . (16)
v

The final stage is determination of the specific
form of the external force F,,(¢) connected with the
effect of the incident radiation. Assume for definiteness
that the light field diffracting at the particle is a plane

circularly polarized wave propagating along the axis z
with the amplitude temporal profile set by the function

£(t) = F() exp {iopt}, (17)

where 7(¢) is the slowly varying function of time. That
is, with allowance for the delay of the field at the point
with the coordinate z, we have:

Z+dag

Ei(r;t)=E (e, +ie, )f[t— )exp{imo t—iky (z+ay)}. (18)

Here e, and e, are unit vectors; Ej is the wave
amplitude; ky = wy/c. The coordinate system is located
at the center of the particle with the radius a.

Let us pass in Eq. (18) from the shifted time to
the actual one using the Fourier transformation and use
the well-known plane wave expansion in terms of
spherical harmonics.20 Then we obtain

. E. o
E/(r; =50 [Glo—og)eioitn 3R, M (kr)-
—0 n

—iN%)(kr)] do ;
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. E. o _
H! (r;t)=1/¢, i:.‘G((D—(DO Jeiot=ikag ;Rn [1N§;11) (kr)+

+ MO (k)] do, (19)

in

where R, =i"2n+ 1) /[n(n + D]; k=0 /c; Glo — og)
is the Fourier transform of f(¢), and M N&) are

in >
spherical vector harmonics at the azimuth index m
equal to unity. We still consider only TE modes. It
should be noted that the type of polarization of the
initial wave influences only the particular form of

functions M%),N%) (Ref. 20).

It is obvious that in this case, because of mutual
orthogonality of spherical harmonics, the sum in
Eq. (19) contains only the terms with the index n
equal to the index of the considered mode of the
internal field, and for the external force we have the
following equation:

. Ey 4
Fl,(0==4 J.G(mf(no)e’th,’Zp(oJ;con,,)dm, (20)
2

where the coefficient K, (0; ©,,) accounts for the

degree of excitation of the internal field mode by the
corresponding external field mode:

) —ika

ic*R,e"d0
I<rrzlp(0);mnp):n— X

V()SakCnp

1% 1 o ' *
x [Wn(kao) Yn (naknpd())_ n_a (D_np v, (kag) ‘Vn(naknpa())}

For further analysis, it is convenient to modify
Eq. (15), reducing it to the canonical form of the
equation of forced oscillations:

d2 d 2 _ Fi
@Aﬂ,,(t) + 20 A (O + 07,4, (0 = Fjp (0, @1

which follows from Eq. (15) at the mode damping

o
r,, =—% and Q,ﬁ,>>1. Here we

np =
20,,

introduce the parameter of the summarized Q-factor of
the particle-resonator

coefficient

t 1, 1 (22)
an Qnap an

that accounts for the total loss of the mode for
absorption and emission of the light wave.

In the general form, the particular solution of the
inhomogeneous equation (21) representing only
oscillations under the action of the external force can
be written as
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10

Anp @ ZMEO {exp{lmrz;)t}
np

I b ()expl=i(®,,, +iT,, )t’}dt}

exp{—il"npt}

2i6)np Fo |fxp {_i(o"pt} ’

X J.F,;p (t’)exp{ ( fil"np) t’}dt'] , (23)

Opp =Oppyf1- F,%p /m%p is the frequency of

natural oscillations of the mode with allowance for
loss.

Specify the Gaussian temporal profile of the
radiation pulse

where

f(t):exp{—(t—to )? /tg } )
In this case, as is known,

G(m—mo):[f—ﬁex { 4m? (EO po))2 imto}, 24)

Op

where ¢, and t, are parameters; Ao, =4n/ ty is the
spectral halfwidth of the pulse. Substitute Eq. (24)
into Eq. (23) and, applying the average theorem, we
obtain the equation for the temporal dependence of the
amplitude coefficient of the internal field mode:

JrK?” ) (0;0,,)E)

io npA®

4,,(1) =

exp{—imgty }x

(8w, +iT,,)?
xexp]—4n2——L P lexpit(i®,, —T,y )} x
ploawt 2 el 1)

dm
{erf(TJtho __4n (an i D + 1}
t, Aoyl 2

0)2
+0O| expd——L L. (25)
(Ao ,)?

Here t=1t-ty; 80,,=0q -

®,,; © is some frequency

inside the spectral profile of the pulse.

Let us analyze this equation. As can be seen, the
temporal dependence of the amplitude of the natural
oscillation is determined by the exponential drop
function with the mode damping coefficient I, and the
probability integral of a complex argument. Its
imaginary part is connected with detuning of the mode
frequency from the frequency of the incident radiation,
and the real part gives the characteristic time, for
which the amplitude reaches the maximum value 1,
that can be determined, based on the erf(x) properties,
as follows:
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rmztg[i+ 1 J:tp(l-s-y) aty <1,
ty Tup

T ® Ty at y>>1, (26)

where 1,, =1/T,, is the characteristic lifetime of the
mode; y = (¢,/1y,). The equation derived indicates that
the time, for which the particle eigenmode amplitude
reaches the maximum, depends on the relation between
the characteristic laser pulse duration and the lifetime
of the mode y and is determined, in the general case, by
the shortest of them.

As the pulse duration shortens, the value of the
maximum (in time) amplitude of the natural oscillation
varies by the following law:

Amax("/) ~ v exp{-v},

which reflects the decrease in the fraction of the pulse
spectral energy used for excitation of the selected
resonance mode. In the other limit, in the region of
long pulses y>>1, from Eq.(23) we have the
corresponding  solution for the continuous-wave
radiation (the delay here is not of importance):
n
An;,(t);LE‘"X
Z(an (Bconp - 1an)

np)} 1] 7)

and the oscillation amplitude reaches the maximum
value

X exp {it((ﬁnp + il"np) } [exp {it(&nnp

r,).

max(oo) K np* np

Ey /(20

Coming back to Eq. (25), it should be also noted
that the eigenmode field amplitude is also affected by
its spectral position relative to the spectrum of the
initial pulse. The larger is the frequency detuning of
the mode Smnp, the worse is its excitation. If the pulse
spectrum is rather wide, that is Ao, > 8w,,, and the
conditions are favorable for excitation of several
eigenmodes, then the resulting temporal dependence of
the field amplitude is determined by their superposition
and has a characteristic beating shape.

Figure 1 shows the time dependence of the relative
(normalized to the maximum value) intensity of the
internal field I(1) calculated with allowance for
Eq. (25) at an arbitrary point inside the particle. Two
model versions of the mode excitation are considered:
resonance of a single mode and non-resonance excitation
of three neighboring modes with different resonance
characteristics (amplitudes of all modes were assumed
equal to unity): Q1 < Qy < Q3; 01 < 0y < 3. It can
be seen that in the last case the dependence I(1) at
T >, has two characteristic parts. Quickly damping
modes form the initial part of the drastic drop of the
field intensity, while the mode with the highest Q-
factor (Q3) determines the long tail in this dependence,
whose duration depends on the lifetime of this mode t3.
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It is obvious that if the inequality ¢, < 13 is fulfilled,
the optical field in the particle exists even after

termination of the initial radiation pulse.

r I(t), rel. units
100 F

1071 f

102 /

103 & L 1 L 1 s 1 . 1 L 1
0 10 20 30 40 v/t

100 I1(t), rel. units

1071 |

10-2 . 1 . 1 . 1 .
0 200 400 600 t/¢,
b

Fig. 1. Model dependence of the internal field of the spherical
particle at excitation of a single resonance mode (@) and three
modes (b). The spectral position of the mode is shown
schematically in small fragments; the pulse spectrum is plotted
as curve 1.

The last statement directly follows from the
solution obtained for the coefficients of the optical field
expansion (25). At the same time, it is somewhat
unusual for the linear theory of light diffraction at a
spherical particle that traditionally considers the
scattering  process under stationary  conditions:
tp >>1,,. This allows us to speak that nonstationary
elastic scattering of light by a particle has a resonance
character, and the shorter the excitation pulse, the
more pronounced this resonance character. Since
characteristic lifetimes of eigenmodes in weakly
absorbing particles can reach ~ 1078-10"9s (Ref. 9),
scattering of pico- and femto-second laser pulses can be
supposed resonance.

In the case of diffraction of long pulses ¢, >>1,,
at a particle, the ¢y field of the TE mode inside the
particle with allowance for Eq. (27) can be written as
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. Krrzlpcnp
E(r;t) = E( exp{ w)ot}z —

— M, (1) .(28)
Z(an (Smnp —ily, )

n,p

However, as is known, the Mie theory in this case
gives

E(r;t)=E, exp{imot}ZCi}/ﬁc(xa M, (). (29)

Here cMi¢ are the Mie coefficients.20 Comparing
Egs. (28) and (29), we obtain

T
Mie z Mie np
c (x)= c (x,, )———— , (30)
" “ > " " (60),!7, —il"np)

where ¢}ie (xpp)=KJhycp / (21,,0,,) is the resonance

value of the Mie coefficient at 0g =0, .

Equation (30) demonstrates the relation between
the above expansion of the electromagnetic field in
terms of the particle eigenmodes (the so-called
Fourier—Bessel ~ series!®) and  the traditional
representation of the field as a superposition of partial
waves in the Debye theory. It follows from this
equation that the information about natural resonances
of the particle is directly contained in the Mie
coefficients in the form of the infinite sum of functions
of resonance profiles. This fact is illustrated in Fig. 2,
which depicts the absolute value of one of the Mie
coefficients at the varying particle diffraction parameter
x,. Numerical calculation was based on Eq. (30).

r Mie
€70 |
- 1
100 |
1074 |
1078 , | . 1 . 1 , |
50 60 70 80 Xg

Fig. 2. Absolute value of the Mie coefficient |c%ie| as a
function of the particle diffraction parameter x, = 2may/A.
Digits enumerate the orders of resonance modes.

The above consideration of regularities in
transition processes of light wave diffraction at a
particle would be incomplete without discussing the
evolution of the electromagnetic field of the scattered
wave. The direct use of the same technique for
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expansion of the scattered field in terms of
eigenfunctions of the particle-resonator in the form (2)
as for the internal field is apparently incorrect, because
the domain of definition of resonance modes is bounded
by a surface close to the particle surface (see the above
notes). Consequently, it is beyond reason to describe
the field at an arbitrary separation from the particle by
the functions (4).

This problem can be solved by passing from
consideration of wave diffraction at a spherical object
to wave emission by a spherical object with a preset
(known) distribution of the electromagnetic field.
Following Refs. 4 and 9, we consider briefly the main
stages of solution of this problem with the so-called
method of integro-differential equation.

Under study is the Helmholtz equation for the
Hertz vector II.(r; ¢) (the similar equation for the vector
potential of the field can be considered as well®)

AT, (r; £)- H (r; )=—47P(r; 1), (31)

which follows from the Maxwell equations (1), and the
vector I.(r; ¢) is determined through electromagnetic
field vectors as

2
E(r; )=—2 9" 11 (r; )+ VdivIL (r; £);
c? ot?
H(r; t):—lirotl'[e(r; t. (32)
cot

Here

P(r; t)= [ - 1—}E(r t)
4n

is polarization of a substance. The solution of Eq. (31)
is known and can be written in the form of a delay
integral at the spatial point with the radius vector r:

P(r’; t)

M, (r; )= J' expl—ikR} dr',  (33)

Vo

where R=|r-r' is the distance between an observation
point and an elementary source. The integral is taken
over the whole volume occupied by sources of the
scattered wave (particle volume V).

For the total field beyond the particle E(r; t), it
follows from Egs. (33) and (32) that

E(r; t) = Ei(r;¢) + ES(r; t) =

=Ei(r; t)+rotrot J‘w

Vo

pi—ik,R}dr', (34)

where k, = m,k, m, is the complex refractive index of
the particulate substance. In the far zone (ko >>1;
r >>r'), taking into account that
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R= \/72 - (1*’)2 —2rr'cos§ =r—r'cos9,

where 9 is the angle between the vectors r and r', we
can simplify Eq. (34) by permutation of the operations
of integration and differentiation. The resulting field of
the scattered radiation ES(r; t) can be represented as a
wave formed by superposition of the fields generated by
polarized elements of the particle volume9:
2
Es (r; t);wexp{ikr}x
4y

X JE(r';t—r/c) exp{ik,r'cos9} dr’ . (35)
Vo

As can be seen, the key point in this approach is the
knowledge of the structure of the field inside the

particle E(r’; t), which is just described by the series (2).

Substitute Eq. (2) into Eq. (35) and write the final
equation for the electric field far from the particle (TE
mode):

s K (g,
Es(r; )= - exp{zkr}z ZAnp(t r/c)] E(9, ),

n p
(36)

where the integrals

I%}F (6, )= ,[E”P (r") exp{ik,r'cos9}dr’

give the angular behavior of the scattered field. It follows
from this equation that the time dependence of the
internal and scattered fields within one mode is the same.
However, since every mode enters into the sum (36) with

its own coefficient Igp]:,

resulting (total) scattered field, generally speaking,
may differ from the time behavior of the field inside the
particle. And only when all modal coefficients A,,, have
the same time dependence, for example, in the case of
long pulses (27), the temporal part can be factorized
out of the summation sign.

Figure 3 depicts the calculated dependence of the
relative intensity of the optical fields inside and outside
a water droplet I(1) (in the far zone) at diffraction of
pulsed radiation with different pulse duration at it. The
numerical calculations were conducted by the technique
described in Ref. 13. The intensity of the internal field
was calculated at the point of the absolute field
maximum at the following values of spherical
coordinates: »=0.92a5, 6=mn, ¢=0. The field
intensities were normalized to the corresponding
temporally maximum level. It was assumed that the
pulses have the Gaussian temporal profile and the
wavelength A =0.81 um typical of femtosecond
Ti:Sapphire lasers.2> For comparison, Fig. 4 shows the
same dependences, but in the case of a long square
pulse, the Mie theory deals with.

the time dependence of the
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Fig. 3. Relative (normalized to the maximum value) intensity of the internal optical field (@, ¢) and the backscattered wave
field (b, d) as a function of dimensionless time 1/, at scattering of pulsed radiation (A = 0.81 pm, ¢, = 100 fs (@, b) and 1 ps (c,

d)) by a water droplet with ¢y = 10 pum.

I1(1), rel. units
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Fig. 4. The same as in Fig. 3, but at resonance scattering of a

square pulse (TE{gg,1 mode) with ¢, =1 ps; internal (solid line)
and scattered (dots) fields.

One can easily see the difference in the time
behavior of the fields at droplet illumination by
ultrashort pulses and, consequently, significantly

resonance character of light scattering. At the same
time, the time behaviors of the internal and scattered
fields shown in Fig. 4 are the same.

Thus, we can draw the following conclusions:

1. The theoretical approach to the problem of
nonstationary linear elastic light scattering by dielectric
spherical particles has been developed. This approach
proposes optical fields of the scattered radiation to be
represented in the form of expansion in terms of
eigenfunctions of the stationary problem, in which the
expansion coefficients determine the time behavior of
the field and satisfy inhomogeneous equations of
oscillations.

2. The study of transient processes at formation of
optical fields in a transparent spherical particle carried
out based on this approach has shown that the
nonstationarity of pulse scattering manifests itself, first
of all, in the time shift of the internal field maximum
with respect to the profile of the initial pulse and in
elongation of the pulse trailing front. This behavior of
nonstationary fields is connected with the resonance
character of the process of light wave scattering by a
particle, when resonance oscillation modes of the internal
optical field are excited, and the lifetimes of these modes
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may be comparable with or much longer than the laser
pulse duration.

3. The main parameters affecting the transient
stage in formation of the internal optical field of the
particle are the laser pulse duration and characteristic
lifetimes of the resonance modes. The time of increase
of the internal field depends on the relation between
these parameters and is determined by the shortest of
them. The characteristic time of the intensity drop is
determined by the lifetime of the excited resonance
mode  with the highest Q-factor. Scattering
nonstationarity is inherent in the pulses, whose
duration does not exceed the characteristic mode
lifetime inside a microparticle resonator. For picosecond
pulses such scattering occurs in rare cases, but for
femtosecond pulses it always exists for optically “large”
particles.
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