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The construction of a flexible membrane mirror is described. Its basic statistical 
characteristics – the sensitivity and the response function of the mirror – are studied. 
The chosen arrangement of actuators is analyzed theoretically. The possibility of using 
such a mirror in an atmospheric adaptive optical system is examined. 

 
 

The random distortions of the wavefront caused by 
atmospheric turbulence degrade the characteristics of 
optical systems used for transmitting and receiving 
information through the atmosphere, in particular, large 
ground-based telescopes. The resolution of a telescope 
can be substantially improved with the help of an 
adaptive optical system with a controllable mirror.1 
Membrane mirrors with electrostatic control are 
promising mirrors of this type.2 They can operate with 
low voltages, they are simple to build, and they permit 
reproducing comparatively simply quite complicated 
phase aberrations of the distorted light wave.3 

In this paper the basic questions pertaining to the 
calculation of controllable membrane mirrors for 
through-the-atmosphere viewing systems are studied. 
A model of a mirror which has been built is described 
its characteristics are studied. 

The construction of an electrostatistically 
controllable membrane mirror is described in Refs. 2 
and 3. Such a mirror consists of a mirror metallic film 
uniformly tensioned onto a ring. The shape of the mirror 
surface is controlled with the help of electrodes placed 
on the back side of the mirror. In order that the mirror be 
able to bend in both directions a transparent electrode is 
placed in front of it. Control of the mirror depends on 
the requirements which the adaptive system as a whole 
must meet. In problems in which the best correction of 
the distorted wavefront must be achieved the mirror is 
controlled with the help of the voltages of each electrode 
separately. The effectiveness of the correction in this 
case can be evaluated in accordance with the results of 
Ref. 4 under the assumption that the response function 
of the mirror is local.3 In adaptive systems that 
implement modal correction of the wavefront the mirror 
is controlled with the help of specially computed 
electrode voltages.5 The number of control channels in 
this case is usually chosen to be less than the number of 
electrodes. We shall study such systems. We shall 
describe the characteristic forms of the wavefront 
distortions with the help of the lowest-order Zernike 
polynomials zj, widely employed in adaptive 
atmospheric systems.1,6 Then we shall represent the 
distorted phase  of the light wave in the form 
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(r and  are the polar coordinates; D is the diameter of 
the receiving aperture ; j are the expansion 
coefficients whose variances are:  

2 5/3
j 00.499( / ) ,D r   j = 2, 3; 

2 5/3
j 00.023( / ) ,D r   j = 4–6; 

 2 5/3
j 00.006( / ) ,D r  j = 7–10; 

2
j

j 11





 = 0.0401(D/r0)
5/3; r0 is Fried’s correlation 

radius; and, the brackets denote averaging over an 
ensemble of realizations). 

The control of the mirror is based on 
compensation of each polynomial zj separately. In this 
case the error J in the correction of the wavefront can 
be written approximately in the form 
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are the errors in the approximation of the polynomials 
Zj; S = D2/4; N is the number of electrodes; j

kP  is 

the controlling force on the k-th electrode in correcting 

j( );Z r


 Rk(r) is the response function of the mirror, 

determined from the solution of the membrane 
deflection equation7: 
 

 (4) 
 

 is the Laplacian operator; W is the deflection of the 
membrane; q is the load acting on the membrane; and, 
T is the tension acting on the mirror in a frame with 
radius R0. 

The response function of the mirror for a stress 
created by a central circular electrode with radius rsa is 
presented in Ref. 3 and Green’s function for a 
membrane is given in Ref. 7. By comparing them it 
can be shown that the response function of an 
arbitrarily positioned actuator, producing a load 
qs = const in its region, will be determined by the 
expression 
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where 2 2
s s s2 cos( );A r r rr        
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and, (rs, s) are the polar coordinates of the center of 
the s-th actuator. 

We call attention to the following. Superthin, free, 
metal films have a very low intrinsic bending stiffness, 
which is neglected in most cases. If, however, the 
tension T is sufficiently small, this stiffness can affect 
the character of the deformation of the mirror. In this 
case the shape of the mirror will be described by the 
equation for the deflection of thin plate under tension:8 
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where D0 is the cylindric stiffness of the mirror. 

In accordance with the general procedure for 
solving Eq. (7) for a circular region, it is not difficult to 
show8 that the response function of the mirror for a 
concentrated force applied at a point with the 
coordinates s s( , )r 


 can be approximately calculated 

using the formula 
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where 2 = T/D0, and I0, I1, K0, and K1 are modified 
Bessel functions. 

This response function satisfies Eqs. (7) and (8) 
for the approximate condition (9) in the form of 

s 0, 0.
2

W
r r R

r
         

 At rs = 0 it is the exact 

solution of the problem (7)–(9). Graphs of the response 
functions (5) and (10) in the case of the action of an 
actuator at the center (rs = 0) are presented in Fig. 1. 
 

 

 
a 

 

 
b 

 

FIG. 1. The response of a membrane mirror to the 
action of an actuator at the center (rs = 0): 
a) D3 = 0: 1 — ra = 0.1 R0, 2 – ra = 0.3 R0,  
3 – ra = 0.5 R0, b) D0  0, ra = 0: 1 –  = 2,  
2 –  = 20. 

 

The controlling forces j
k ,P  required for 

approximating the corresponding polynomial j( ),Z r


 

can be calculated with the help of the expressions(5) and 
(10) obtained above. Since the condition that the mirror 
be clamped on the frame does not permit giving the form 
of zj in the entire region of the mirror the diameter D of 
the region of correction must be chosen to be less than 
2R0. We shall study the dependence of the 
approximation errors (3) on geometry of the 
arrangement of the actuators. In what follows, for 
simplicity, we shall everywhere assume that the 
membrane mirror is made of an absolutely flexible 
metallic film (D0 = 0). In this case the functions 
rn exp[in], n = 0, 1, 2,  satisfy Eq. (4) identically.7 
 



O.A. Yevseev et al. Vol. 2,  No. 8 /August  1989/ Atmos. Oceanic Opt.  689 
 

 

These functions include the first ten Zernike 
polynomials, with the exception of z4 and z8,7. For this 
reason, to correct j( ),z r


 j = l, 2, 3, 5, 6, 9, and 10, 

the electrodes must be placed on the boundary of the 
region  or outside it. The electrodes should be placed 
inside  only to obtain Z4, Z8,7 (m  10). 

Five variants of the arrangement of circular 
actuators with radius ra at the nodes of Cartesian and 
polar coordinate grids were calculated. The first two 
variants are shown in Fig. 2a, while the remaining 
three variants are shown in Fig. 2b (the solid lines 
show the arrangements of the actuators). We denote 
these variants by the numbers 1–5. They correspond to 
the following values of the parameters: N, ra, ai:  
1 – N = 21, a0 = 2ra = 0.25 D;  
2 – N = 37, a0 = 0.165D, 2ra = 0.15 D;  
3 – N = 7, a1 = 2rs = 0.4 D;  
4 – N = 19, a2 = 2a1 = 4ra = 0.5 D;  
5 – N = 43, a3 = 1.5, a2 = 3, a1 = 0.495 D, 
ra = 0.08 D. In all the variants the radius of the 
mirror was assumed to be R0 = 0.65 D. The 
controlling forces necessary to reproduce Zj were 
calculated using the formula1 
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where sr


 are the coordinates of the centers of the 

electrodes. 
 
TABLE I. 
 

 
 

 
 
FIG. 2. Diagrams of the positions of the centers of 
the actuators. 

 
The forces determined in this manner correspond 

to the experimental arrangement of the control 

system.1 The errors jJ  in the approximation of the 

Zernike polynomials Zj by a membrane mirror with 
response functions of the form (5) are given in Table I. 
In this table 

jz
N  is the number of the approximated 

polynomial Zj and Nvar is the variant of the electrode 
arrangement. In the most general formulation of the 
problem of correcting an arbitrary wavefront (rs) the 
controlling forces exerted by the electrodes must also 
be calculated using the formula (11), in which Zj must 
be replaced by tp. In so doing, it is implicitly assumed 
in the expression (11) that the phase of the wave  at 
the points sr


 can be measured directly (for example, 

with the help of a Zernike phase contrast sensor1). At 
the same time, to observe weak light sources 
(astronomical objects) sensors of local tilts, for 
example, a Hartman sensor, are widely employed. 1 In 
this case there arises the problem of the preliminary 
reconstruction of (rs). This can be avoided in the 
calculation of the control of membrane mirrors. It is 
well known1,9 that algorithms for reconstructing the 
wavefront that minimize the errors in the measurement 
of the local tilts of the wavefront are, as a rule, a 
discrete analog of the following equation: 
 

 (12) 
 

where X, Y, r, and  are the measured (with noise) 

average values of ,
x



 ,
y



 ,
r



 and 



 over the 

subapertures of the sensors. 
Then, comparing Eq. (4) with Eq. (12), it is 

obvious that the controlling forces for electrodes 
placed inside the receiving aperture  can be 
determined from the formula 
 

 (13) 
 

while the forces for electrodes placed on the boundary 
of  can be calculated using the well-known 
procedure9 of finding the best rms approximation of 
the tilts of the mirror to the tilts of the distorted 
wavefront. The expression (13) is especially simple in 
the case when the electrodes are placed at the nodes of 
a square grid (Fig. 2a). If the slope sensors are placed 
at the nodes of the covering grid, shifted by 0.5a0 
along the x and ó axes, the formula for calculating the 
actuator forces assumes the following form: 
 

 
 

 (14) 
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Here the indices (i, j) refer to the position of the node 
(xj, ój) of the grid. 

In calculating the control system of a real mirror 
it is necessary to determine the effect of the clamping 
errors on the quality of the mirror surface. In 
accordance with Ref. 7 it is not difficult to show 
that for a clamping error of the form 
W(r = R0, ) = C  cosn the rms error in the 
deviation of the mirror surface from a flat shape on 
the region  is 0.5C2(D/2R0)

2n/(n + 1). 
A model of a controllable membrane mirror for 

systems of observation through the turbulent 
atmosphere was built based on the foregoing 
analysis. The mirror-smooth film, prepared by the 
method of vacuum deposition of layers of copper and 
aluminum and having a diameter of 110 mm, was 
stretched with uniform tension on a ring with an 
inner diameter of 100 mm. The mirror was grounded 
and placed between the input window, coated with a 
transparent conducting layer, and 37 electrostatic 
actuators. The electrostatic actuators consisted of 
contact pads 6.5 mm in diameter spaced by 7.8 mm 
on an insulated base. The actuator assembly was 
filled with epoxy resin, and the end surface of the 
actuators was ground and polished. The distance 
between the contact pads and the mirror film was 
equal to 50–100 mm. The errors in the 
approximation (3) of the lowest order Zernike 
polynomials computed for this mirror on the region 
of correction  5 mm in diameter were as follows: 
 

 

 
 

The controlling forces were determined from the 
condition that the errors (3) be minimum, and the 
response functions of the mirror were calculated using 
formula (5). The deformations of the mirror so 
obtained were measured with the help of a modified 
shadow method on a Ten’-5 apparatus. Figure 3a 
shows the shadow pattern of the initial profile of the 
mirror; Fig. 3b shows the profile of the mirror (upper 
curve) and the profile of the tilt angle (bottom curve) 
in a section along the diameter of the mirror. The 
breaks at the edges of the curves correspond to the 
mirror frame. The distortion of a flat shape of the 
mirror near the frame is explained by the imperfection 
of the technology employed to fabricate the mirror 
with uniform tension. For a region of correction D=50 
mm such distortions are of no consequence; in the 
worst case they can always be compensated with the 
help of the outer actuators. The profiles of the mirror 
surface and the tilt angle of the mirror in the case when 
a voltage of 200 V is applied to the central electrode 
are shown in Fig. 3c. The sensitivity of the deflection of 
the mirror to the voltage on the central electrode was 
quadratic and equaled 10 m with a voltage of 200 V. 

In conclusion we note that the obtained range of 
variations of the shape of the membrane mirror built 
indicates that such a mirror can be used in atmospheric 
adaptive systems. The theoretical analysis of the 
deformations of membrane mirrors performed above 
will make it possible to simplify the design of the 
control systems of such mirrors. 
 

 
 

 
 

 
 
FIG. 3. The deformation of the surface of a 
membrane mirror: a) shadow picture of the 
starting surface of the mirror; b), c) profiles of 
the surface of the mirror (top) and tilt angle of the 
mirror (bottom) in the initial state (b) and with 
the voltage of 200 V on the central electrode (c). 
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