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The possibility of expansion of the transmission function P into a series of exponents using
directly the empirical (or some other) information on the spectrally integrated value of P is discussed.
This approach does not require complicated calculation of the spectral molecular absorption coefficient
connected with numerous approximations, empirical constants, and computational problems.

1. Formulation of the problem

Representing the transmission function

"

w

P(x):LIe-xm) dw, Aw=w' - o (1)
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for the “dimensionless” thickness x of a layer of an
absorbing gas with the molecular absorption coefficient
K(w) for radiation at the frequency w in the form of an
exponential series

1
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(where by and g, are ordinates and abscissas of the
corresponding quadrature formula) has, for a long time,
been a popular trick in solving problems of atmospheric
spectroscopy. 3 The function s(g) in Eq. (2) inverse to

g(s)=-L [do, K@ss w0, o (3)
Aw
and exact in Eq. (3) follows from
c+ioo s
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Equations (4) are obvious corollaries of the initial
definitions of f and g:

P(x) :J;f(s) e™s*ds, @ :-gg(s) e*ds.  (5)

In principle, Eq. (3) solves the problem on
constructing the series (2), but calculation of K(w)
invokes numerous approximations including great
number of empiric parameters. In essence, for the
transmission function (1) as a spectrally integrated
parameter, many spectral features of k(w) are
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insignificant. Therefore, it is desirable to construct g(s)
directly from the information on P(x). The initial
information may be empirical data or their
approximations either direct or relying on the models of
absorption bands.

However, one cannot make use of Eq. (4) in
computations, because numerical construction of an
analytical extrapolation of an empiric function seems to
be unrealistic. Approximations, in their turn, usually

include ¥x (there are some physical reasons for this4).
At a similar extrapolation, this will lead to bifurcation
of solutions with unclear mathematical corollaries.

Certainly, Egs. (5) can be treated as integral
equations for f and g, but solution of the ill-posed
inverse problem is difficult because of the empirical
origin of Eq. (1). Further, P(x) depends on
thermodynamic characteristics of the medium, and
every time at their variations, one has to solve Eq. (5)
anew. In addition, significant difficulties arise at
generalization of Eq. (2) to the case of an
inhomogeneous medium, beam overlapping, calculation
of the source function.3

Therefore, it is desirable to find such a version
that

g(s) =.!P(x) ®(x; s)dx (6)

with ® obeying some, independent of P, equation. The
proof of the existence of Eq. (6) is considered in this

paper.

2. Analytical properties of P(z)
with complex z = x + 1y

From the definition (1) it follows that P(z) is an
integer function with the properties

lim |P(2)| =0; x20; lim |P(2)| =00, x<0.
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At the imaginary axis
P(iy) =U(y +iV(y);

@QQ o [Cos[yK(u))]E (7)
[sm[yK(w)]

with even U(y) and odd V().

These properties of P(z) allow us to shift
integration in Eq. (4) to the imaginary axis (¢ - 0).
Using a standard approach, we derive the dispersion
equations

V(y)dy U(y)dy

U()—1PI (8)

1PI

3. Transition to Eq. (6)

Substituting Eq. (7) into Eq. (4), where ¢ =0,
and then excluding V by Eq. (8) and using the
symmetry properties of U and V, we obtain

smsy

9

g(s)=2 {d g UG

Naturally, after substitution of Eq. (7) into
Eq. (9), turn back to Eq. (3).
Consider the integral

I:L,IP(Z)dZ
21‘[1C z—Xx

over the contour C shown in Fig. 1. The properties of
P(z) from Section 2 lead to the following equation:

Pz L0l
T Y- tx

=P(x)

(10)

Fig. 1. The integration contour used in deriving Eq. (10); Cp
is a crescent of radius R — oo,

Vol. 14, No. 9 /September 2001,/ Atmos. Oceanic Opt. 671

Certainly, Eq. (10) can be treated as an equation
for U(y) and then g(s) can be calculated by Eq. (9).
However, we can see that, mathematically, this version
reduces to the already discussed equation (5).

Then, seemingly, it is worth trying to express
P(iy) through P(x) using the idea of the Schwartz
integral for a half-plane.> Here we have to consider the
integral (with the complex variable & = ¢ + 1)

i PEE
7[(36 £)2 +y2

over the contour C (Fig. 2). Simply writing the
integrals over the axes ¢ and T, we obtain the equation

=P(2)

yPMOdt 15 iyPGDdT
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P(x +iy) =1

The first term is a harmonic function taking the value
P(x) at the real axis (y —» 0). Another integral is the
difference from the desirable function. (Although it is
zero at y - 0.)

i

Fig. 2. Integration contour used in deriving Eq. (11): Cp is a
crescent of radius p — 0.

In the considered version, at x — 0 the contour in
Fig. 2 is to be deformed by passing around the point
T =y by the crescent of radius p - 0. Then, we have
the integral equation (Fredholm integral equation of
the first kind)

°p »
BOydt 2 P
§ t2+y? W

for P(iy) with a “free” term expressed through Eq. (1).
Again the direct check shows that solution of the latter
equation is Eq. (7), that is, we again come back to the
problems already discussed in Section 1.

The version (6) excluding the above computational
difficulties results from a simple formal transformation.
Assume that ®(x; s) exists as a solution of the integral
equation (Fredholm integral equation of the first kind)

y PGT) dt

Plip)=2 o

(12)

“ x d(x;s) dx _ sinsy
-! y*+a? v
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Then, multiplying Eq. (10) by ®, integrating over x,
and applying Eq. (9), we immediately come to Eq. (6).
Note here that the transition from Egs. (9), (10),
and (12) to Eq.(6) naturally assumes the
permutability of the integrals in the relation

J)'dxxcb(x )l’igy:jy .

This problem (as in all other cases) is solved by the
standard methods.6

It is clear that Eq. (12) is independent of
thermodynamic parameters and possible variations of
the function (1) — all the corresponding characteristics
of g(s) arise already after substitution of the “proper”
P quantity into Eq. (6). (Inhomogeneous medium,
band overlapping, source function.3)

After multiplication of Eq. (12) by cos &y and the

operation {dy(...) , we see that

w M &<s
{db(x;i)e'ixdx:%l E=s =
o &>0 (13)
(+1°°dp
Ep(1—esP
5  Eer-e).

Then, if we assume that @ is a solution to Eq. (13),
then Egs. (6) and (1) lead to the exact Eq. (3).

4. Mathematical aspects
concerning the Egs. (6), (12), and (13)

The Fredholm integral equations of the first kind
have some fine mathematical aspects (see, for example,
Ref. 7). The central problem is uniqueness of the
solution of Egs. (12) or (13). However the benchmark
is Eq. (10), and its unique solution is Eq. (7) what can
be directly checked. Other transformations accompanied
by clarification of the possibility to permute integrations
are identical. Certainly, here we need an additional
phrase that P has a mathematical structure (1).

The following solution of Eq. (12) or (13) should
likely be only numerical, and this assumes invoking of
the corresponding and non-trivial8 tricks (by the way,
if we aim at V instead of U, then in Eq. (6) ® - U,
and the latter satisfies the equation

® P s) da

_ 1 (
e 1_COSS)
‘! y2ra2 g2 Y

with the always positive right-hand side. In this case
oY,/ 0ds = xP).

It may appear possible to write an analytical
equation for Eq. (12). Actually, assume that @ is
regular in the right half-plane z. Then, transforming
Eq. (6) by contour integration as shown in Fig. 2,
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express g(s) through the integral over the imaginary
axis. Then, writing Eq. (9) in the equivalent form

+00 +oo
1 sinsy 1 1-cossy
$)=—(dy—=U(y) ~— [dy————=V(») ,
g 2n_,[0 v= VG 2n:[oy , Yy

we find an explicit form of ® at the imaginary axis, and
it only remains for us to extrapolate it to the positive
real axis. However, this scenario is impossible, what
became clear, in fact, when discussing Eq. (11), because
it is formally equivalent to transformation of the upper
half-plane into the right-hand side one, but in this case
there is no any harmonic function corresponding to the
Schwartz integral for a half-plane. In other words, the
initial assumption about @ is not true.

Then, solving Eq. (13), we, seemingly, should use
the inverse Laplace transformation, but it is possible only
if the right-hand side of the equation is a function regular
in the right half-plane’; however, it is not the case
with Eq. (13) because of discontinuity of the derivative.
Certainly, this does not mean that Eq. (13) has no
solution; this only means that the solution cannot be
found through the inverse Laplace transformation.

Further simplification of Egs. (6) and (13) is
possible. Assume that in Eq. (12) we have ®(x;s) =
=s¢(x; s), x = yn, sy = a, then

. ne (yn; s)dn _ sina
{ 1+n?2 a

Now the statement that ¢ depends on the product
yns = an looks rather reliable. If we also take that
an = q, then we derive the equation

¢ q6(q)dg _ sina
{ a? +q? a
The following transformations are the same as at
transition from Egs. (12) and (13), and the result is
the equation
o o &<t,
—Ex _ M _
A’¢<x)e de=[5 €=1, (14)
o &>1.

Equation (6) after the above transformations acquires

the form
g(s) :;fp ﬁfﬁw» du (15)

with the solution in the form of Eq. (14).
From Eq. (15), the correct statement lim g(s) =1

§— 00
Eq. (3) follows. Actually,

in view of Eq. (1), and

corresponding  to
lim P(x /s) = P(0) =1

S -0

‘!’q; (x)dx=1. Then, lirr(l) P(x /s)= P(w) =0, and,
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according to Eq. (15), lirr(l] g(s) =0, as is needed for
S —

Eq. (3). Correspondingly, equation (3) itself is the
corollary of Egs. (15), (1), and (14).
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