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It is shown that the formal representation of the relaxation superoperator as a sum of two terms
means automatic separation of the asymptotic cases of large and small frequency detunings.

1. Initial equations.
Problem formulation

In the method associated with the term “Fano
resolvent,” characteristics of the spectral line profile are
calculated through (M(0))y = Sp, M(o) R. In its
mathematical definition, M is the superoperator of x
over the variables of the “active” (interacting with the
field of the frequency ®) molecule and y over the
variables of the “dissipative subsystem” (buffer
molecule, centers of gravity) with the Gibbs density
matrix R (Sp, is the spur over y). In accordance with
the previous definitions, the Hamiltonian of the
problem is

H=H(x)+Hy(y) +Ux,y) =Hy+ U, (1)

where Hy and Hy are the Hamiltonians of the “active”
and “dissipative” subsystems; U is the energy of their
interaction.

In Ref. 1 it was shown that the matrix elements of

the superoperator M are
(nm | M|n'm’> ={nm | M1 ‘ n'm'y + (nm ‘ M2 | n'm’y, (2)
(nm | My [ wm'y =8, (n| T[w + %E,(,?) j [n"y—
8 (m|T*(%E,(70) —mj|m’) , 3
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where |n), |m) ..., E,(,O), E,(,?) are eigenfunctions and
cigenvalues of H, from Eq. (1); Hy=Hy® I, H{=
=I®Hy T=T®I, T =1®T, ® denotes the direct

product, I is the unit operator, 1/4 = A~1; * denotes
Hermitian conjugation, and n — 0. It should be added
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that by purely mathematical reasons o — o + ie with
g€ — +0 in Egs. (2) and (3).
Operator T is the solution of the Lippmann—
Schwinger equation:
ro=tvslv—1
h no 1 H,
/]

T(2), ()

where complex z plays the role of a parameter; 7 is
Planck’s constant. Keeping in mind the physical
meaning? of Eq. (5), it seems natural to call the fact that
Eq. (2) turns to be expressed through T the Fano
theorem.

The aim of this paper is to reveal the meaning of
terms in Eq. (2): Eq. (3) prevails at the small
frequency detuning and Eq. (4) prevails at the large
frequency detuning. The frequency detuning is
Ao =lo - w0|, where ©( plays the role of a spectral
line center; the asymptotic cases are determined by the
inequalities A® <<y and Ao >y with the line
halfwidth y.

Note, that (M) (as superoperators of x) appear as
a relaxation superoperator in kinetic equations of the
spectral line profile theory, and this was marked still in
Ref. 1 (see also Refs. 3-5).

2. Equation (3) and resonance (Ao — 0)

The variants of kinetic equations invoking
heuristic grounds characteristic of just the resonance
situation are very popular in the theory of spectral line
profile.6-9etc. Keeping in mind the absolute physical
clearness of such actions, we can confirm the meaning
of Eq. (3), comparing it with the corresponding
relaxation superoperators.

Let wus first remind predecessors for such
consideration. In the general case, the density matrix
and wave functions ¢, are connected by the sum
Zanm 9,0, With a,,, values from the statistical part of
nm
the problem (the bar denotes complex conjugation). If ¢,
is identified with eigenfunctions of Hy from Eq. (1),
that is, with wavefunctions |in> “before collision of
molecules,” then “after collision” they become
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|outy=s|in) with the “scattering matrix” operator s.
Therefore, the collisional change of the density matrix
can be written as s*ps — p. The density matrix p itself
is unknown, and the kinetic equation is constructed
just for it.

The significance of the resonance condition is
quite obvious. At ® =~ g, for the Fermi's Golden Rule
to be fulfilled, the fact of collision between molecules
is sufficient (the exhaustive information about this is
given, for example, in Ref. 8), and the collision
dynamics is inessential. Just this allows us to use s for
calculation of the "increment” p.

Hereinafter, the indices n — nao, m — mbp...,
where n, m, ... correspond to the states of the active
molecule, a, b, ... number the states of the buffer
molecule, and o, B, ... correspond to the centers of
gravity. Symbol p is declared the density matrix of the
active molecule (interacting with the dissipative
subsystem), that is, p = pR. For the Gibbs matrix R,
the matrix elements (a'c’|R|b'B") = Rya S8y Sgrpr- In
these designations, the matrix element <n‘...|m> of
statistical average (...)s of the density matrix increment

leads to the expression IA<p — p, where the superoperator
K of x has the matrix elements
Kot = Z(naoﬂ S*|n'a'oa'Ym'a'o' | S| maa)R,qy . (6)
aoa'o’
The quantum theory of scattering (see, for

example, Ref. 2) gives the following relation

(nac|S|mbp)=38,,,,8 4,5 (k, —kg )(2m)* ~2mi x

2h2
x&i_r)r(l)(na(x|T[Em+Eb+ gu +isJ|mbB)x
k2n2 252
xs[Em+Eb+ p —E,,—Ea—k“h @
2u 2n

between the matrix elements of S and T from Eq. (5).
In Eq. (7), E,, E,,..., E;, Ep... are cigenvalues of the
Hamiltonians of the active and buffer molecules;
k242 /2= po? /2 with velocity v with respect to the
centers of gravity, p is their reduced mass, and k is the
wave vector of the de Broglie wave for the centers of
gravity.

The product of the second terms from Eq. (7)
appearing in Eq. (6) is nonzero only in the situation
shown schematically below.

- @@ k_______rﬂ{t— n'
n—o—-—-—-____ m'
_En_Em _ _En’_Em'
Dy = =0 =
h h

Arrows denote transitions at collisions
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This pattern follows from the meaning of the
matrix elements of T and zero arguments of the &-
functions. But it does not correspond to selection rules
for quantum transitions.

The substitution of Eq. (7) into Eq. (6) gives rise
to a mathematical problem — the appearance of
products of the &-functions. The quantum theory of
scattering recommends to eliminate this problem by
integration over a small layer of the energy surface
(e > 0 in Eq. (7)). The levels of colliding molecules,
of course, remain discrete, and the velocities of the
centers of gravity are continuous (that is why just §-
functions, rather than 8-symbols appear in Eq. (7)). In
other words, the integration under discussion is
associated with the “velocity layer.”

Then, the 8-functions after the matrix elements of
T express the energy conservation law, and its
fulfillment at  fixed  discrete indices means
corresponding changes of v. Therefore, integration over
the velocity layer turns the considered §-functions into

unity. However, 8(k, — kg) — 6(k((x()) - kéO) +Akyp),
where k((XO) and kéO) are fixed layers, and Ak,g is their
thickness varying in the vicinity of zero. It is clear that
the integral over the layer is zero, if k((xO) # kéO), that is,
8(ky, — kg) turns into 3.

After the above considerations, the product of the
first terms in Eq. (7) gives the term §,,, §,,, in

Eq. (6), and it mutually annihilates with p in Kp-p.
Finally, the “cross” products prove to be equivalent to
Eq. (3). (The “excess” factor ii is simply connected
with substitution of Eq. (2) into the equation for the
density matrix).

Equation (3) can be obtained also by constructing
the kinetic equation for the density matrix of the active
molecule through the BBGKY chain with its early
break (commutator is ignored) and already three-
particle density matrix.”

Then pq(1,t) and py(2, t) are single-particle
density matrices for the active (1) and buffer (2)
molecules. Their Hamiltonians H(1) and H(2) now,
besides the intramolecular degrees of freedom, include
kinetic energy operators of centers of gravity. The two-
particle density matrix is denoted as py(¢). Let us
introduce the commutator superoperator for an
arbitrary operator z

L,=1[H, z] €))

with the corresponding Hamiltonian H. In particular,

Ly corresponds to Hy=H(1)+H(2), Ly— H(1), L' - U.
After the following approximations

p2(0) = p (1, 0)p1(2,0) with Gibbs p;
e+Lo p2(0) = p(1, )py (2, t) in equation for pyp (9)

p1(2,t-t" = p1(2,0) in equation for p,
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we have the kinetic equation

Cop(L, 0 N y i
ih ot —L1 p1+2TEhSp2 fdf dee 20,
0

~ 01
L =
z—L

(z-Lo) py(1, t =) py(2,0),  (10)

where L is Eq. (8) with H = H(1) + H(2) + U; N is
the number of buffer molecules per unit volume.
The superoperator T=1'G-L)"'x (z - ]:0)
appearing in Eq. (10) is the solution of the equation
PO 1 .

T=01'+1——FT. (11)
Z_L()

We should call Eq. (11), comparing it with Eq. (5),
the Lippmann — Schwinger equation in the
superoperator form. Then, standard transformations

show that the matrix elements of 7 from Eq. (11)
coincide with Eq. (3). First, we should calculate the
Laplace transform of Eq. (10) (for the argument
s = —i0), and the arising singular function involves the
substitution: z — ho.

Comparing this result with the previous general
analysis through the scattering matrix, we can establish
that the early (already at the second step) break of the
BBGKY chain is the description of the resonance
situation in terms of the spectral line profile theory. In
fact, the same is emphasized by Eq. (9), because it
implies a smallness of energy of intermolecular interaction
as compared to the intramolecular interaction. Such a
situation is characteristic of rather large separations
between molecules, whose collisions just form the line
center.

Reference 9 gives more accurate description of the
previous scheme — the transition from the first Eq. (9)
to the second one already looks like a mathematically
correct transformation. The initial condition is
transformed into ¢=—o, when tlim pr()=p1(1,) pr(2, 1)

——®

becomes physically valid. The standard procedure then
gives

5y = Q) py(1, 1) p1(2, t) Q*(2) 12)
with the definition

Q@) = lim g(t, t) got, ), (13)
'—>—o0

which includes the evolution operators for H and H
from Eq. (1). In terms of the quantum scattering
theory, Eq. (13) turns out to be the Msller operator
independent of ¢, and the solution of Eq. (5) is

T =UQ. (14)

Consequent substitution of Eq. (12) into equations of
the first step of the BBGKY chain and invoking the
third equation (9) give the kinetic equation with the
collision integral for py
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éSpQ [U, Qpi(1, 1) pp(2, 0) Q*]. (15)

Now Eq. (14) converts Eq. (15) into Eq. (3) at
formal Q — 1. According to the meaning of the Moller
operator, Q|in) :|\u>, where ‘\y> is the wave function
of interacting molecules at their maximum approach. In
other words, Q — 1 means the condition ‘\y>:|in>
characteristic of a spectral line center.

In essence, the early break of the BBGKY chain
keeps in Ref. 9, and therefore the statement about the
resonance character of Eq. (15) is quite natural.
Moreover, Eq. (12), as Eq. (9), implies the
approximation of low U as compared to the
intramolecular energy.

3. Equation (4) and line profile
periphery (Ao — ©)

For the large frequency detuning, Ref. 10 presents
the kinetic equation (like Eq. (10)) with the relaxation
superoperator (in the designations of Eqs. (8) and (1))

f dt et Sp, P'eli'R= f dt eit Sp, F(t) R. (16)
0 0

The physical meaning of Eq.(16) as an
approximation becomes clear, if to use the approach
from Ref. 11 equivalent to that from Ref. 3. The formal
condition is small NR@G#(or/ot) — [Hy, rDN in
comparison with NU,R"N where operator
r = Sp, gDpRp~! with the dipole moment operator D
of the active molecule. The first equation after
transition to the Laplace transform and application of
the Abel theorem gives O(Ng(0)N) at Ao —> o; the
second equation, after the same transformations, can be
estimated as O(NL'N Ng(0)N/#Ao) with the natural
addition that NL'N > O(y). Finally, we have the
condition Aw >>y for Eq. (16) to fulfill.

It becomes clear (see Ref. 4) that Eq. (16) is a
particular case of the exact kinetic equation, in which
F— L' (exp (t/ih) (1 = P) L)L'. If the exponential
superoperator is written as (exp (¢/ih) L)C, then after
standard transformations the condition for the change

C - 1 becomes the former (y/Aw) <<1. This, in fact,
completes the argumentation that Eq. (16) is the
relaxation superoperator for the large frequency
detuning.

The simplest way from Eq. (4) to Eq. (16) is
calculation of the Fourier transform

+o0
B(t) = ﬁ f do e it My(o) 17

for the superoperator M, from Eq. (4). The following
transition to the Laplace transform in the form of
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Eq. (16) is almost obvious: for ¢ > 0 the superoperator

F(t) = B(t); the time ¢ = 0 is determined by the initial
condition of the problem.

The tentative formal solution of Eq. (5) — the
operator

T:(z-lHoj L 1y (18)
n ), g
h

is transformed by the resolvent representation in the

form
1 :Z 1/)(/] (19)
2—1H j 2—1E]-
h h

where ‘j} and E; are the eigenfunctions and eigenvalues
of the Hamiltonian (1). Now the substitution of
Egs. (18) and (19) into Eq. (17) allows us to integrate

over the axis z using residues, and the result will be F
from Eq. (16). Just this, in fact, is declared by the
meaning of Eq. (4).
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