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Calculations of rovibrational energy levels of diatomic molecules by the perturbation method are
considered. Perturbation series may diverge at large values of the angular momentum quantum number,
and in this case the Euler method is used for series summation. The Kratzer oscillator, i.e., the exactly
solvable quantum problem, is used as an approximant. The equation for the general term of a transformed

series is derived and analyzed.
Introduction

Solution of various problems in atmospheric
spectroscopy requires calculation of positions and
strengths of spectral lines of diatomic molecules such as
0,, CO, OH, HCI, HI and some others for large values
of the rotational quantum number J. As known, the
energy levels of diatomic molecules can be presented by
perturbation, or Dunham, series,! and these series are
divergent at large values of J. The problem of divergence
of the perturbation series becomes especially pressing
for high-excited vibrational states, transitions to which
form the spectra in the near IR and visible regions.

Several methods were proposed for solution of this
problem (see, for example, Refs. 2-9). In Ref. 10, it was
suggested that generalized Euler transform of the
Dunham series to be used, a new representation of the
perturbation series was obtained, and the conditions for
convergence of the transformed series were established.

The aim of this work was to find the general term
of the transformed series. As an approximating function,
we used, as in Ref. 10, the equation for energy levels of
the Kratzer oscillator — the exactly solvable quantum-
mechanics problem. As known, the Kratzer potential rather
well reproduces the characteristic features of a vibrating
and rotating diatomic molecule. Therefore, its usage as
an approximant in transformation of the perturbation
series allows a large part of the rotational-vibrational
energy to be taken into account already in the zero
approximation. In Ref. 10, it was shown that at the Euler
transform of the perturbation series (with the Kratzer
potential as an approximant) at rather general assumptions
concerning the coefficients of the initial series converges
at any values of the vibrational and rotational quantum
numbers. Reference 10 presents only some first terms of
the transformed series, and this paper is aimed at
performing this transformation in the general form.

Here, we consider briefly the Euler method and
present equations for the Dunham series (which is the
initial one here) for the problem with the Kratzer potential,
as well as derive general equations for the transformed
series. In the final section we give different presentations
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of the transformed series and estimates of the coefficients
of these series for the HI molecule.

1. Generalized Euler transformation

In this section, we present briefly the main equations
of the Euler method.!:13.14 Let the function f(z) be
presented as

[@=)f.2", 1)
n=0

and some its estimate, the approximating function, be
known

g(z):Zgnz” =G0+ gi1z+ ozl +... . @)
n=0

The Euler transform was earlier successfully applied
to summation of divergent series in some problems of
quantum mechanics, for example, for calculation of
energy levels of an anharmonic oscillator, calculation of
the Stark and Zeeman effects for the hydrogen atom in
strong fields, summation of 1,/Z-expansion in the atom
theory (see, for example, Refs. 13 and 14). As known, 13
the Euler method is regular, that is, it gives correct
values of sums for convergent series.

The Euler transform of a series can be presented as

F@= Y1 d, g,

nl dzn
n=0 dz

) 3)
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2. Dunham series and Kratzer oscillator

Application of the perturbation theory to calculation
of the rotational-vibrational energy levels of diatomic
molecules gives the following equation:
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E(J,0)= ) Yan(o+1/ 2/ U +DI" . (@

n,m

where o is the vibrational quantum number, and J is
the angular momentum quantum number, and the series
coefficients Y,,, are called the Dunham coefficients.
These are related, in a certain way, to the coefficients
of a power series expansion of the potential function
over the displacements from the equilibrium position.!
Equation (4) can be presented as

E(x’y)zzcm(y)xm ) 5)

where ¢,,(y) are some functions that can be presented
by the following series expansions:

Cm (!/) = ZYnmy” (6)

n=0
and

y=ov+1/2, x=JJ + 1), EQ,0) =0. (7)

If the coefficients of the series (4) are known, then the
functions c¢,,(y) presented by the series in Eq. (5) can
be determined by some methods, for example, by the
Pade method.

The Kratzer equation!? describes the rotational-
vibrational energy levels of a diatomic molecule with
the potential function

V(r >_i2—5 (8)

r r

The Schrodinger equation with this potential has an
exact solution, and the energy levels are values of the
following function, which will be referred to as the
Kratzer function:

K(],v)z—a[v+1/2+m]—2+a[1/2+\/5]_2:
——aly+x+b] +alyj2+45] 2

B2

ad=—
252

, b=1/4+2An/h?. 9)
Here p is the reduced mass of the diatomic molecule, and
the energy is measured from zero level v =0, J = 0. The
constants ¢ and b can also be expressed through the
dissociation energy E4 and the equilibrium distance 7,:

a=2E§rC2u/h2, b=1/4+2Ed1’02u/h2.

Equation (4) can be used for transformation of the
Dunham series to a more convenient form so that the
transformed series has better convergence and the
function corresponding to it has correct asymptotic at
large values of v and J. It should be noted that the
Kratzer function gives qualitatively correct asymptotic
dependence — the energy levels are concentrated in the
interval determined by the depth of the potential well,
while the asymptotic behavior of the Dunham series at
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large values of y = v + 1,/2 depends on the sign of the
highest term in the series (4).

3. General term of transformed series

To determine the general term of the Euler transform
of the Dunham series, we have to -calculate the
coefficients of Eq. (3). To do this, we have to find the
nth-order derivative of the approximating function with
respect to x. For this purpose, we can use the following
equations

4" pfmyF W) (- 1) F - “(«gh
du” (QJ_) 1! (2\/_)n
Lt Dn-DG-DF" D) (40
21 (2\/—)724-2

and

& (1+a«/5)2n4=—(2n_1)”%(a2 —%)H (11)
u

du” on
from Ref. 16 [Eq. (0.433)] and the identity

d” 0

d?’l
LK y) =2 FWNu)+8,y—2——, (12)
o K= g T+ [t/2+4B]
where
u=a-+b; F(«/_)—d - ( u]u:“b.

Equation (10) can be written as follows

dr - FOD ()
FWu)=) cij(m)y——os=2, (13)
du” ) ;‘C ! i)

where the coefficients ¢;(n) can be determined by the

recursion equations:
cm=m+i-1Dcio(n) (n—1),cpg=1, c,(n)=0. (14)

Using simple, though cumbersome, transformations,
one can write Eq. (3) in the form

i(—mdn S
n=0

X

D (=i 1)
azcl(n) iy.2n+i x
i=0 :

(y+vx+b )_2
Wx+o)"(y+vx+b)""
Let us transform this equation, introducing new

variables Zi(x) =x/(x+b), Zo(x, y) =\[x + b/

/(y+\[x+ b):

g " (- 1)"”(n-1+1)v( n"

(15)

i=0
(y+\/x+ ) (x+b)" (16)
e R
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Then Eq. (15) takes the form:

> d, 2} (1)Z, (x,9)y + N +B) ax

n=0
- (n—i+1)! (x+b)"
X.Zci(n) -2 ) i - Un
=0 Zy(x,y)(x+b) 2 (y+yx+b)""

Changing then the summation index, we obtain

aZi(x)Zy(x,y)
doK(x,y) - —2"2220 N, G 20 (x) 9, (,y), (18)
where
m+1 ( 3 2)‘
m—-—i1+2).
(Pm(x,y)—golci(mﬁ)m
m+1
x (x+b) . (19)

m+1+i

Zy(x,y)(x+b) 2 (y+m)7n+1—i

Thus, the general equation for ¢,,(x, y) takes the form

m+1

O (,y)= ZC,' (m+ 1)M

: Z17 (x,y) . (20)
" i2mH ()

Since ¢,,+1(m + 1) =0, Eq. (20) is the polynomial of m

power in terms of Zy(x, y) = \/x +b/(y+ \/x +b).
The vibrationally dependent parameters d,(y) are

calculated by the equation

\- -(n+1)c'(y)
d,(y)= T L Q1
) g( ) 21

where

(22)

1o
9i(y)=——K(x,9)

il ox? =0
are the coefficients of the Taylor series expansion of the
Kratzer function over the variable x. Using Eq. (13),
we obtain
1
— X
!

gi(y) =

—(i-7)-2

S SR atiaal Gt kL 1UAR L)
2+ (Ve + o)™

7=0

(23)
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Thus, Eq. (12) for d,(y) with the allowance made
for Eq. (14) has the same form as Eq. (21), where

T.V. Kruglova

n

1
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Conclusion

The general equations obtained suggest the
following conclusions:

1. The Euler transformation (3) of the Dunham
series (7) in the general form shows that the use of
Kratzer function (9) as an approximation allows
introduction of new variables Z{(x) = x/(x + b) and

Zy(x,y) = \/x +b/(y + \/x + b), which are smaller than
unity for any values of the vibrational y = v + 1,/2 and
rotational x = J(J + 1) quantum numbers.

The Dunham series transformed by the Euler method
includes the Kratzer function as an approximant [the
first term in Eq. (18)] with the correction factor d
depending only on the vibrational quantum number and
the rotational-vibrational addition represented by the
functional series — the second term in Eq. (18). The use
of the approximant for calculation of the sum of
perturbation series allows a large part of the RV energy
of a molecule to be taken into account already in the
zero-order approximation, what facilitates summation of
the remaining part of the series.

2. It can be shown that the functions ¢,,(x, y) <1
for all possible values of x and y, what relatively easily
gives the convergence conditions of the transformed
series (see Ref. 10).

Assume that the series (6) converge or, in other
words, they can be summed up by some method, and they
are bounded above by functions d,(y) of the vibrational
variable y. Then we can show that the correction term
in Eq. (18) is also a bounded function, and the
addition in Eq. (18) tends to zero at y — o. Thus, the
asymptotic of the transformed series is determined by
the first term in Eq. (18) — the Kratzer function K(x, y).

3. Besides, the general equations for the transformed
series allow the vibrational dependence of the rotational
and centrifugal distortion constants to be analyzed.

Equations (9) and (12) show that at y=-+b the

vibrational energy has a second-order pole, the rotational
constant (coefficient ¢{(y)) has a third-order pole, and
the centrifugal distortion constants are determined by
Eq. (26) ati > 1. These constants considered as functions
of the vibrational variable y have poles of the (i + 2)th

order at y = —/b, what allows the summation method used
in calculation of Eq. (6) to be justified. In particular,
it can be noted that the centrifugal distortion constants
are presented by a part of the series over inverse powers
of (y+\/5)

4. The transformed series can be presented in
different forms, what is convenient from the
computational point of view. For example, the
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correction term in Eq.(18) can be presented as an
ordinary power series by expanding the factors ¢,,(x, y)

into a power series of Z;(x) or U(x)=41-Z{(x), because

1

Zoy)e——
: 1+b671/2yU(x)
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