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The dependence of water vapor thermodynamic characteristics
on H,O molecule vibrational states
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The dependences of the second and third virial coefficients of water vapor on the H,O molecule
vibrational states are calculated. The model intermolecular Stockmayer potential is used taking into
account the dipole-dipole interaction between excited molecules. The strong dependence of virial
coefficients on molecular concentration is found. In this case a bending vibrational mode is excited. This
also results in significant variations of thermodynamic parameters of water vapor, whose molecules are

excited to the bending vibrational states.

Introduction

Knowledge of water vapor characteristics is very
important in investigating the Earth’s atmosphere, in
simulating different physical and chemical processes,
and in many other applications. In molecular
spectroscopy, the HyO molecule is classified as nonrigid
molecule! with complicated intramolecular interactions.
The excitation of nonrigid (deformation) oscillation
mode results in an anomalously sharp variation of a series
of parameters characterizing the vibration-rotation (VR)
spectrum of the molecule. Present-day experimental and
theoretical methods in the VR-spectroscopy of water
vapor are described in Ref. 2. However, in the
literature the problem on the influence of intramolecular
motions in the H»O molecule on the intermolecular
interactions has not been adequately studied. These
interactions  manifest themselves both  through
thermodynamic parameters and through transport
coefficients characterizing the gas condition.

In this paper we describe the investigation of the
effect of vibrational excitations in the H,O molecule on
the water vapor virial coefficients. Since the H,O
molecule is a polar molecule, primary attention is given
to calculation of the variations of virial coefficients at
the dipole moment of molecules being varied due to
vibrational excitation.

1. Model of the potential
of intermolecular interaction

Thermodynamic parameters of a gas medium, such
as internal energy, entropy, the Joule—Thomson
coefficient, etc. can be expressed through virial
coefficients and their derivatives with respect to
temperature.3 The second B(T), third C(T), and so on,
virial coefficients are determined through the virial
equation of state3
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PV/RT=1+B(T),/V+C(T)/V2+ ... 1)

The second virial coefficient is connected with the
forces due to pairwise interaction; the third virial
coefficient is connected with the forces due to triple
interaction, and so on. The largest contribution to
intermolecular interaction forces of polar molecules
comes from the dipole-dipole interaction.4 The quantum-
mechanical expression for the energy of interaction of
two polar molecules, being in quantum states (n) and
(m), has the form4

Eqa=M,M,,/R3 - 3(M,R) (M,, R) /R5. (2)

Here M,,=<W¥, I[M| W, > is the matrix element of the
vector of the molecular dipole moment M based on the
complete electronic vibration-rotation wave functions
W,, and the vector R connects the centers of molecular
masses. Projections of My of the molecular dipole
moment in the space coordinate system (f= X, Y, Z)
are connected with the projections pg of this moment in
the molecular system (B =x, y, z) by the relation
M¢=5pupdsp, where ¢7p is the direction cosines
connecting the two coordinate systems.

The first approximation, used in this paper,
implies that the rotation of a molecule in space is
considered from a classical standpoint. This makes it
possible to factor out the values connected with the
molecular rotation (unit vectors in space coordinate
system and ¢7p) from the quantum-mechanical mean
<>. Let us consider next that only one molecular
component (for example, W, = p) differs from zero and
we can write that

Edd == |J~n IJHZ/R3 g(e17 921 ¢) (3)

The type of the function g(8;, 6,5, ¢), determining
the relative position of dipoles, is well known.3 In the
matrix element, as it is conventional in the theory of
VR molecular spectra,!=2 one can pass to an effective
dipole moment [ and wave functions 'gn of zero
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approximation for electron and vibrational types of
motion. In this paper the dependence of the dipole
moment on the rotational operators is not taken into
account so that T=p. We consider the case when the
molecules are in one electron state, so that n» and m in
Eq. (3) number the vibrational states, i.e., are the
generalized vibrational numbers.

The second approximation, used in the paper,
implies that other types of interaction among molecules
(dispersion, induction, etc.) are simulated by the
Lennard—Jones potential34 with the parameters ¢ and
€, which do not depend on quantum numbers. Thus,
model potential of interaction between the molecules in
the vibrational states (#) and (m) wused in the
calculations has the form

U(R, n, m) = 4¢ {(c/R)12 — (6 /R)6} —

~ My Mm/R3 9(617 8-, ¢) (4)

This potential is a modified Stockmayer potential3~>
where the dipole moments of interacting molecules
depend on vibrational states. The values of dipole
moments in different states (n) = (vy, vg, v3) (v; is the
vibrational quantum numbers, i =1, 2, 3) for H,O
molecule were calculated in Refs. 6 and 7; in this case
the results are used of the most complete calculations
from Ref.7 (v; <4, ©0y<10, v3<4). The values
0 =2.65A ¢/k =380 K for water are taken from Ref. 3
(k is the Boltzmann constant). Note that maximum
variation of the dipole moment is 26.4%, according to
Ref. 7, and corresponds to the state (0, 7, 0).

2. Second virial coefficient and
thermodynamic parameters

The second virial coefficient B(T) for gas,
containing molecules in different vibrational states, can
be calculated in the same way as for the
multicomponent gas mixture

B(T) = z z Xn Xm Bnm(T)v 6))

n -m

in this formula x,, is the molecular concentration (states
(n)), B,, denotes second virial coefficients for a pure
component, i.e., for the gas containing 100% of excited
molecules, B,,, is the cross virial coefficient determined
by the potential (4) with (n) # (m). In addition to
B(T), the values can be found in the literature of the
cited virial coefficient B*(T) = B(T) /by, where for
water molecule the value of by = 23.42 ¢cm3,/mol. The
values of B}, in the Stockmayer potential model were
calculated by the formula3
i
® 2

Bl = %g@ élzﬂ—ljz 22—’,(3 ()~
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Here I(...) is the gamma function, the quantities G; are
connected with the triple integration over angle variables
kT 1 UM
01, 85, and ¢ (Ref. 3), T = D um :m %.
Analysis of calculations showed that the values of
B}, vary over wide limits when changing the quantum
number vy. Figures 1a and 1b show the dependences of
the second virial coefficients B,,(T) = B(n, T) for pure
gas components (containing 100% of excited molecules)
for the case n = v3 and n = vy, respectively.
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Fig. 1. The dependence of the second virial coefficient B(n, T)
for water vapor containing 100% of excited molecules
(em3/mol): (@) quantum number n = v3 (valence vibrational
mode); (b) n= vy (bending vibrational mode) at different
temperatures T, °C.

The calculation by formula (5) for the case when the
concentrations of x, are determined by Boltzmann
statistics, i.e., x,, = exp(=E, /kT) /Q (E,, are vibrational
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centers, Q is the vibrational partition function) shows
that the value of B is close to the value of the second
virial coefficient B of water vapor, all the molecules of
which are in the ground state (n = 0) with gy = 1.85 D.
The value of By was calculated repeatedly and
compared with the experiment.3 The dependence of the
second virial coefficient B, on the concentration of
excited molecules was calculated by the formula

= x,)? By, (7)

following from Eq. (5) under the assumption that the
water vapor is a two-component mixture consisting of
excited molecules (with the concentration x,) and
unexcited molecules (with the concentration (1 — x,,)).
Figure 2 presents the dependence of the second virial
coefficient B,, on the concentration x, of molecules
being in excited states (n) = (0, vy, 0) at the
temperature of 300°C. It is evident that the dependence
on vy is significant. For example, when transferring
20% of molecules to the excited vibration state
(0, 3, 0) the variation of AB,, = (B, — By) /By is 4.5%.

By, = x121 By + 2(1 = x) 2 Byo + (1
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Fig. 2. The dependence of the second virial coefficient B,(T)
(em3/mol) of water vapor on the concentration x, of excited
molecules.

Basic contributions to thermodynamic parameters
are due to the second virial coefficient and its
derivative with respect to temperature. The dependence
of these parameters for a pure gas component on
vibrational quantum numbers or their dependence on
the concentration of excited molecules are similar to the
dependences of the second virial coefficient on these
values (Figs. 1-2).

3. Third virial coefficient

The calculation of the third virial coefficient is a
more complicated problem than calculation of the
second coefficient since the interaction of three
molecules should be taken into account simultaneously.
In this paper, we used the potential (4) and the
calculation procedure from Ref. 8 to calculate C(T).
Regardless the fact that the Stockmayer potential (4)
gives in the calculation of C(T) for water vapor poor
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agreement with the experimental data,8 we use it to
determine the dependence of C(T) on vibrational
excitations, i.e., we are interested not in absolute
values of this coefficient, but in its vibration
dependence manifested in the dependence of the dipole
moments on quantum numbers v;.

For the multicomponent mixture

c(T) = z z z Xn Xm Xs Cnms(T)’ (8)

n -m s

where x, have the same meaning as in Eq. (5), C,,,
denotes the third virial coefficients for pure components,
and C,,,s (with a pair of noncoincident indices) denotes
the cross virial coefficients. According to Ref. 8, C,s
can be presented as a sum C,,,; = C + AC,,,s;, where C
is independent of the values of dipole moments of
interacting molecules as well as of vibrational quantum
numbers. The values of C are determined by the
Lennard—Jones potential with the corresponding
parameters and have been calculated in the literature
(we took these values from Ref. 8) many times. The
values of AC,,,, which determine the difference between
the polar and nonpolar virial coefficients, in the model
of the Stockmayer potential are determined as

-1,/4Q2j+i+2) (nms)

0;", (9

Q](r:nzs) % (Q;wlns + Q;)Z.:n + Q;ﬂlﬂl)’ (10)

Qji = (411)3 r E’ (2 —i- 2)H
3/4 ==Y 2n om
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T NI 11
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X

X AA; i F12(E) m + & Fi3(t) s + NP Fa3(t) sl =
Byl Fio(t)  + EF13(t) 1" —
Ci il Fiolt ) + NP Fa3(t ) sl —
il & Fi3(t) s + N Fa3(t) sl + Fio(ty): nm
+ 8 Fig(t)hs +n° Fys(t)lng. (11)

Determination of the values Fiy, Fy3, Fa3, & N, 4;;,
B;;, C;i, Dj; are found in Ref. 8 and are not cited in
this paper.

The integration over x and y? can be only done
numerically. In this connection we restricted our
consideration to the terms of the series (9) with
2<j<16 and 2<i<8 as in Ref. 8. Integration was
performed using a computer by the Gaussian method
with six nodes at six intervals of separation of
integration intervals.?
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Table 1. Integrals Qj ;, obtained from Eq. (11) at (£\)pm = (t)ns = (E)ms = 1

; ! 2 3 4 5 6 7 8
2 0.4155
3 0.3368 0.9529
4 0.3176 0.4378 1.0373
5 0.2846 0.4514 0.7489 1.0213
6 0.0958 0.6526 0.6150 1.2419 1.9997
7 ~0.7102 1.170 0.2381 2.0300 1.3140 2.9204
8 -3.722 2.459 ~1.228 3.9951 -0.1707 5.9623 1.0545
9 ~14.51 5.855 -6.597 9.014 ~5.0478 13.3503 -6.7210
10 ~53.08 15.46 ~25.67 22.68 -21.566 32.748 ~29.369
11 ~193.1 44.54 -93.47 62.53 ~77.81 87.32 ~100.02
12 ~714.1 138.4 -338.7 186.5 ~272.7 251.04 -328.4
13 | —2711 459.9 ~1249 595.7 -966 772.6 ~1093
14 |-10610 1626 —4734 2024 -3511 2530 -3753
15 |-42876 6032 ~18503 7268 ~13173 8763 ~13366
16 |-178973 23559 ~74714 27451 ~51153 31968 ~49470

To check up the calculations, we compared the
values of Q;; from Ref. 8 and the values of Q;;
obtained from Eq. (11) at (¢1),, = (Eps = E s = 1.
The comparison has shown that there are some
distinctions in the values of several integrals of Q; ;.
The values of Q; ; obtained are given in Table 1.

Figure 3 shows the dependences of the reduced
third virial coefficients, Cp,, = C,mn/b% for pure
components in the case when these components contain
molecules, in which the bending vibration mode is
excited, i.e., m =10y As one would expect, these
dependences are more essential than those for the
second virial coefficients B,,(T), Fig. 1b.

o
g
sk
7k
oF ™
sk
i
3 & "
| v— ~a . °
20 e Vv N a—u—w o—
= —e A — _~ A
ey O — g Y~ R o—0—0 _A—
F x_>+<_;:§=;s;§§§iéi§§§§;§g;
0 S T T TS RS S B
0 2 4 6 8 10 12 0y

Fig. 3. The dependence of the given third virial coefficient
Cy =Cpp of water vapor, containing 100% of excited
molecules, on the vibrational quantum number n = vy at

different temperatures T, °C.

The dependence of the third virial coefficient C,
on the concentration x, of excited molecules was
calculated by the formula

_ .3 2
Cp =2y Cppp + 301 = 1) 25, Cpppp +

+ 3(1 - .Xn)Z Xn CnOO + (1 - xn)3 COOO’ (12)

i.e., as in the case of the calculation of B,, Eq. (7), it
was assumed that water vapor is a two-component
mixture of excited and unexcited molecules. Figure 4

shows the dependences of the third virial coefficient Cj,
on the concentration of x, molecules, being in the
excited bending states (n) = (0, vy, 0) at the
temperature of 300°C. Comparing with the coefficient
B,, we can find that the conversion of 20% of
molecules to the excited vibrational state (0, 3, 0)
changes the coefficient C, by 5-9% (for B, this change
is 4.5%).
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Fig. 4. The dependence of the reduced third virial coefficient
C, on the concentration x, of excited molecules.

4. Discussion

We have shown, by calculations, made with the
use of the model intermolecular potential, that the
virial coefficients of water vapor depend on the
concentration of HyO molecules in the excited bending
vibration states. These dependences are most significant
at low temperatures and are clearly defined for the
third virial coefficient. Knowledge of virial coefficients
enables one to determine thermodynamic characteristics
of water vapor containing the molecules in the excited
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vibrational states. The calculation of the third virial
coefficient for the equation of state (1) makes it
possible to determine the behavior of critical gas
constants depending on the concentration of excited
molecules (at a critical point the first and second
derivatives of the pressure with respect to gas density
(at constant temperature) are equal zero). The results
of such calculations for a series of nonrigid molecules
will be given in the next paper.
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