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The model of phase screen for numerical simulation of laser propagation in rain is suggested. 
Since the optical radiation scattering on rain drops is considered within the diffraction approximation 
for the scattering phase function, the spectrum of correlation function of water drop dielectric 
permeability fluctuations in the atmosphere has a Gaussian form. The simulation results are compared 
with known theoretical estimates. The averaging effect of the receiver on measured parameters of 
laser radiation is investigated. 

 

Introduction 
 

Laser beams, propagating in the atmosphere, are 
distorted due to fluctuations of the medium dielectric 
permeability. These fluctuations are concerned not 
only with turbulent inhomogeneity of air density, but 
with the discrete component of the atmosphere, i.e., 
aerosol particles, fog, atmospheric precipitations.1–4 
Laser radiation scattering on rain drops results in 
beam broadening and intensity fluctuations inside it, 
like in the turbulent atmosphere.4 In addition, 
radiation attenuates due to absorption by discrete 
scatterers.4,5 

Statistical characteristics of the laser beam filed 
propagating in rain have been experimentally and 
theoretically investigated in Refs. 4–12. Laser beam 
propagation in rain, like in the turbulent atmosphere, 
can be described to parabolic approximation.13 

In this work, we suggest a phase screen 
model,14–16

 considering scattering on discrete scatterers 
in a turbulent medium. Based on the exponential law 
of water-drop size distribution, accounting for the 
rain rate dependence,1 equations are obtained for the 
correlation function spectrum of fluctuations of the 
effective dielectric permeability of discrete atmospheric 
component in rain. For the turbulent component, the 
Karman model is accepted, taking into account the 
influence of the inner scale of inhomogeneities.17 The 
results of numerical simulation of laser beam 

propagation along a path in turbulent atmosphere 
with rain are presented and compared with known 
theoretical estimates. The averaging effect of the 
receiving aperture on the measured parameters of 
radiation, passing through the atmospheric layer with 
rain, is studied.  

 

1. Phase screen model for describing 
radiation scattering in rain 

 

Sizes of rain drops ap are larger than the 

wavelength λ, ap >> λ; hence, the only forward 

scattering can be taken into account,18 and the 
parabolic equation 
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can be used to describe laser radiation propagation in 
rain.4,10,17 Here U(r) is the complex amplitude of the 
field E(r) = U(r)eikz; r = (õ, ó, z), z is the coordinate 
towards propagation; k = 2π/λ is the wave number; 
(x, y) ≡ ρ are the transversal coordinates; 
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is the dielectric permeability of the atmosphere without 
precipitations; ε� ( )T r  is its turbulent fluctuations; 
ε = 〈ε 〉 + ε�p p p( ) ( ) ( )r r r  is the dielectric permeability of 
atmosphere with water drops, 〈εp(r)〉 is its mean 
value, and ε�p( )r  is its fluctuations caused by random 
distribution of drops within air volume and of the 
drop number over radii and sizes. 

When describing rains, the Low–Parsons size 
distribution1–4 of the drop numbers versus rain rate is 
widely used: 

 p(ap, J) = N0(J) exp[–Λ(J)ap], 

 N0(J) = 4.382 ⋅ 106
 J0.112 m–4; 

 Λ(J) = 5932J–0.182 m–1, (2) 

where J is the rain rate, mm/h; ap is the drop radius, 
m. In view of this distribution, the spectrum of 
correlation function of fluctuations ε�p( )r  depends on 

the rain rate, i.e., 
ε ε

Φ = Φ
� �p p

( , ),Jκ  and has the form10 
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where κ are the spectral coordinates; f0(κ, ap) is the 
amplitude of wave scattering on an individual particle 
of ap radius. Since water drops are larger in comparison 
with λ, the diffraction component of the scattering 
amplitude can represent it2,3; and equation (3) can be 
approximated to the square-law exponent 
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where Ñ p
2
(J) is the constant similar to the structural 

characteristic of turbulent fluctuations of the dielectric 
permeability Ñ 

ε

2
: 

 C
2
p (J) =∼  1.28 ⋅10−12 J 1.822 k−2. (5) 

In this approximation, the real part Re ε(r) = εT(r) 
turns out to be connected with turbulent fluctuations, 
and the imaginary one Im ε(r) = εp(r) – with discrete 
scatterers (rain drops). 

The parameter am in Eq. (4) is the scale of 
inhomogeneities of a continuum medium equivalent 
to a discrete scattering medium with the characteristic 
drop scale am. It is possible to show (Fig. 1) that 
approximation (4) is the best square-exponent 

approximation of spectrum (3), where the volume 
median radius of rain drops1,4 (Fig. 1, curve 4) is 
chosen as the characteristic scale am: 

 am = 6.19 ⋅ 10−4
 J 

0.182. (6) 

The spectra with mean (curve 2) and mean-square 
radii (curve 3) are shown in Fig. 1 for comparison. 
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Fig. 1. The normalized spectrum of correlation function of 
fluctuations of effective dielectric permeability of a discrete 
scattering medium with the Low–Parsons size distribution 
of particles: exact value (1) (Eq. (3)); approximation for 
mean (2), mean-square (3), and median (Eq. (6)) (4) drop 
radii. 

 

The mean value 〈εp(r)〉 determines the total 
radiation attenuation in rain 

 τ = 〈ε 〉 ≅ ⋅
–4 0.658

p( ) 2.638 10 .kz zJr  (7) 

The constant Ap in Eq. (4) can be defined as the 
correlation factor between Ñ p

2
(J) and the variance of 

plane wave intensity fluctuations σ τ
2( )I  to the first 

approximation of the method of smooth perturbations 
(MSP), τ << 1: 
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where L is the length of laser radiation propagation 
path in the atmosphere with precipitations. Thus,  
Ñ p

2
(J) correlates with the amplitude of spectrum (4) 

with the rain rate J, while Ap – with conditions on 
propagation path. 

Representing atmospheric precipitations as an 
equivalent continuum medium with the characteristic 
scale am, where radiation scattering is accompanied 
by its attenuation, laser beam propagation in turbulent 
atmosphere with precipitations can be considered as 
similar to those in a continuum medium with three 
characteristic scales (outer and inner scales of 
turbulent inhomogeneities; as well as rain drop scale 
am); and the splitting technique15 can be applied to 
Eq. (1). Within this technique, the length Δz of each 
path layer should satisfy the condition 

 τ(Δz) << 1. (9) 

In the middle of each layer, a thin screen is located, 
determining distortions of the field, passed through 
the layer 
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where U(0, ρ) is the incident field; U(Δz, ρ) is the 
field passed through the layer; Ψt(ρ) is the random 
phase incursion when scattering on turbulent 

inhomogeneities; −Ψp ( )
e

ρ
 is the random variation of 

field amplitude caused by a discrete scatterer. The 
quantity 
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defines the field attenuation by the medium discrete 
scattering component. Thus, the influence of the 
discrete component of a random medium on a laser 
beam, passed through the layer Δz, is defined by the 
amplitude screen 

 τ Δ −Ψp– ( )/2 ( )
e .

z ρ  (12) 

As is seen from Eqs. (10) and (12), a thin screen 
is to be amplitude-phase. However, the solution of 
the equation for the second moment of the field 

Γ2(z, ρ1, ρ2) with replacing the factor 
−Ψp ( )

e
ρ

 by the 

phase screen Ψ� p ( )
e
i ρ  (Ψ� p( )ρ  is the random phase 

incursion, acquired by the wave while passing through 
the layer, coincides with the rigorous solution of this 
equation to the Markov approximation.12 Using this 
fact, consider only the field phase fluctuations, 
performing the above factor replacing in Eq. (12). 
  Since τ(Δz) is independent of transversal 
coordinates, total attenuation of a laser beam passed 
a path of L in length can be defined by the factor 
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e−τ(L)/2 after executing all the steps Δz along the 
path, consisting in sequential multiplication of the 
field by the phase screen and free field diffraction 
between screens.  

A two-dimensional N × N phase screen is 
generated by the equation 
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where Δõ and Δó are the distances between nodes; 
(ξnm, ζnm) are the independent random sequence  
with zero mean and unit variance. The spectrum of 
correlation phase function ΦΨ(κ⊥, J) is related with 
the spectrum of correlation function of dielectric 
permeability fluctuations as14–16: 
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Here εΦ
�

( ,0, )Jκ  is the total spectrum of correlation 

function of fluctuations of the air dielectric 

permeability and water drops,  
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κ  is the Karman spectrum.17 

Now determine step and size of the numerical 
grid in a transverse plane, the length Δz of the path 
layer L for a given radiation parameters of the 
source, and such medium parameters as radiation 
wavelength λ, rain rate J, turbulence parameter Ñ 

ε

2
. 

The beam radius a0 and wave front curvature F are 
to be chosen so that to satisfy the listed below 
conditions. First, the grid size in the transverse plane 
is to exceed the beam diameter and the drop 
diffraction radius at far end of a path of the length 
z = L: 
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the parameter h is an integer-number resolution 

common for all scales. The relation between beam and 

drop radii is defined in comparison with the Fresnel 
radius: 
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m
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Finally, the transverse resolution is determined from 
the relation between characteristic scales of medium 
dielectric permeability fluctuations and the wave 
front curvature of the beam field F: 

 
ε

⎛ ⎞πλ
Δ ≤ ρ⎜ ⎟⎜ ⎟

⎝ ⎠

2

m

1
min ( , ) , / , ,

8
T

F
x C z h a h

N
 (18) 

where 
ε ε

ρ =
2 2 2 –3/5( , ) (0.3 )T C z C k z  is the coherence 

radius of a plane wave in a turbulent medium. 
According to Eq. (17), the beam radius is larger than 
the drop one; hence, there is no need in using the 
variable a0 in Eq. (18) to determine the grid step Δõ. 
 

2. Simulation results 
 

The above algorithm was tested for a plane wave 
(Fig. 2) and a Gaussian beam (Fig. 3) in the mode of 
weak fluctuations of the radiation intensity. The 

variance of plane wave intensity fluctuations 2
,pwIσ  at 

small optical depths τ << 1 is determined by τ (see 
Fig. 2)7,9,11,12: 

 2
,pw ,Iσ τ�  τ << 1. (19) 

At τ > 1, 2
,pwIσ  is comparable with unity and tends  

to 1 at the further increase of the optical depth 
τ >> 1 (see Fig. 2)10,12: 

 2
,pw 1,Iσ �  τ     >> 1. (20) 
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Fig. 2. Relative variance of plan wave intensity fluctuations: 
calculation to the first approximation of MSP (1); 
simulation (2). 
 

An addition effect of the turbulence on the 

variance of rain-propagating radiation intensity 

fluctuations manifests itself as displacement of the 
above τ dependence along X-axis. For a rain-
propagating Gaussian beam, the variance of intensity 
fluctuations on its axis to the first approximation of 
MSP is determined by the equation9,12: 
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where μ = z/F; Ω =
2
0

0

ka

z
 is the Fresnel number. As 

is seen from Fig. 3, the simulation results coincide 

with the variance σ
2

I  calculated by Eq. (21) within 

the domain τ < 0.5. 
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Fig. 3. Relative variance of intensity fluctuations of the 
collimated beam a0 = 3 cm (the Fresnel number Ω0 = 57) in 
the atmosphere with precipitations: rain in the homogeneous 
atmosphere (simulation and calculation to MSP 

approximation) (1 and 3); turbulent atmosphere with 
precipitations, plane wave scintillation index β 0, pw

2
 = 0.31Ñ ε

2

k7/6z11/6 = 0.1 (simulation and MSP) (2 and 4); rain in the 
homogeneous atmosphere, plane wave, MSP (5). 

 
In practice, when measuring the variances of 

intensity fluctuations, the size of the receiver aperture 
ar and different diaphragms, used in the experiment, 
make an averaging effect on the measured parameters 
(mean intensity, variance of intensity fluctuations) 
because the signal in the receiver is, in fact, the power 
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S
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where S is the receiver’s area, and the division of P 
by the receiver area yields the intensity averaged over 
S area  
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Therefore, the parameter, measured in the experiment, 
can be, for example, the variance of radiation flux 
fluctuations  

 σ =
�
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2 2
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I
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instead of the variance of intensity fluctuations. 
Figure 4 shows the variances of received radiation 

flux fluctuations as functions of the receiver 
apertures (ar = 0.04, 0.24, and 0.95 mm). Note, that 

σ
�

2

I
 decreases by 2–3 times at τ ≈ 0.1 already at 

ar ≈ 0.5 ÷ 0.7 mm. 
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Fig. 4. Variance of the received radiation flux fluctuations 
(plane wave) as a function of optical depth and receiver size 
to the MSP approximation (1) and at ar = 0.04 (2), 
0.24 (3), and 0.95 mm (4). 

 

Hence, for the chosen receiver size, there is a 
limiting value of optical depth, for which σI

2
 is still 

measurable (see Fig. 4). For ar = 0.95 mm, the variance 
of intensity fluctuations tends not to 1, like at 

ar = 0.4 mm, but to a level significantly less than 
unity. 

 

Conclusion 
 
The model of phase screen is suggested and 

verified for numerical simulation of laser propagation 
in the atmosphere with precipitations. The model is 
based on the diffraction approximation of the 

scattering phase function; the phase screen has the 
Gaussian profile of the correlation function of effective 
dielectric permeability fluctuations. The spectrum 
scale is determined by the volume median radius of 
water drops. 

The averaging effect of the receiver aperture on 
the variation of intensity fluctuations has been 
studied. The results of numerical simulations of laser 
beam propagation in rain and turbulent atmosphere 
with precipitations by the method of phase screen are 
presented. The simulation results agree with the well-
known theoretical estimates of the variance of beam 
intensity fluctuations to the MSP approximation for 
both components of atmosphere with precipitations. 
  It is shown that for the chosen receiver size there 
is a limiting value of the optical depth, for which the 
variation of intensity fluctuations is still measurable. 
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