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A radiation treatment of the broken cloud problem is described, based upon a 
class of stochastic models of the equation of radiative transfer, which considers the 
clouds and clear sky as a two component random mixture. These models, recently 
introduced in the kinetic theory literature, allow for both Markovian and non–
Markovian statistics as well as spatial variations of the cloudiness. Numerical results 
are given which compare different models of stochastic radiative transfer, and which 
point out the importance of treating the broken cloud problem as a stochastic process. 
It is also shown that an integral Markovian model proposed within the atmospheric 
radiation community by Titov is equivalent to one of our differential models.  

 
1. INTRODUCTION 

 
It is generally accepted that cloud–radiation 

interaction is an essential component in the determination 
of earth climate, and that an accurate treatment of the 
broken cloud problem in General Circulation Models 
(GCMs) is a key element in the prediction of climate 
changes. We refer the reader to the papers of Stephens,20 
Ramanathan et al.,17 Stephens et al.,21 and the references 
therein. The need for a statistical description in which the 
clouds and clear sky are treated as a two component 
stochastic mixture has also been recognized for some time 
(Titov,23 Stephens et al.21).  

In this paper we present some recent models 
introduced in the kinetic theory literature concerning 
particle and radiation transport in stochastic media, that 
can easily and naturally be applied to this atmospheric 
radiative transfer problem. The kinetic theory applications 
of this stochastic transport formalism are many and 
include radiative transfer in Rayleigh–Taylor unstable 
inertially confined fusion pellets, neutron transport in 
boiling water reactors, gamma and neutron flow through 
concrete shields, and light transport through murky water 
and sooty air. For a list of published papers in the kinetic 
theory literature, we refer the reader to the book by 
Pomraning15 and the more recent papers by Malvagi and 
Pomraning,10 Vanderhaegen et al.,27 and Su and 
Pomraning.22  

The relevance of these models to the atmospheric 
radiative transfer have also been discussed in a recent 
paper by Malvagi et al.11 Here we want to supplement 
that discussion and introduce these ideas to a wider 
audience within the climate community. In particular we 
discuss an approach which we consider quite promising for 
future implementation in GCMs, where the size of the 
spatial numerical cell does not allow for the resolution of 
individual clouds, even if the description (size, shape, and 
location) of such clouds were known. This approach, 
based upon a Markovian model that has been modified to 
account for arbitrary (non–Markovian) cloud size and 
spacing distributions, is applicable to an arbitrary binary 
mixture and has been generalized to a mixture of more 
than two components. Further, it requires relatively few 
input parameters, possesses several exact limits, has 
proven to be robust and relatively accurate far from those 
limits, and has the form of integro–differential equations  

that are convenient for analysis, and for which an 
extensive body of numerical solution methods is readily 
available. Finally, it allows for arbitrary variations of the 
cloudiness, both vertically and laterally.  

In the next section, the treatment of the broken cloud 
problem as a binary mixture is described, and two classes of 
statistics, Markovian and renewal, are discussed. The 
following section presents the theory of stochastic radiative 
transfer and shows how this theory leads to an exact set of 
integro–differential equations which present a closure 
problem. Two closures proposed for Markovian statistics are 
then presented in Section 4. Section 5 briefly discusses how 
those Markovian closures can be modified in order to 
account for non–Markovian statistics. In Section 6 some 
numerical results are presented, which complement the 
results previously reported in Malvagi et al.11 An appendix 
is also included, where we show that in its low order and 
Markovian form our approach is equivalent to a Markovian 
model introduced in the atmospheric science community by 
Titov23 and coworkers.29 The Titov formalism involves two 
coupled integral equations, and we show that these 
equations can be reduced to a standard differential form. 
This differential form is in fact identical to the low–order 
kinetic theory model in the special case when the clear sky is 
treated as completely transparent (the case treated by 
Titov).  

 

2. BROKEN CLOUDS AS A BINARY MIXTURE 
 

In real cloudiness inhomogeneities can be found at 
many scale lengths (Lovejoy et al.8). Nonetheless, due to 
the largely differing optical properties of liquid water and 
water vapour and to the fact that the 
macroinhomogeneities of the cloud field are on a scale 
which is large compared to the mean free path of photons 
in clouds, one can consider clouds and clear sky as a 
binary mixture of immiscible fluids, each with distinct 
physical properties. On the typical scale of a GCM spatial 
grid (i.e., several thousand square kilometers), the 
geometry of the cloud field (cloud locations, size, and 
spacings) often appears to be random, thus generating a 
radiation field which is stochastic in nature, and whose 
average properties one wants to determine. A statistical 
formulation then seems to be the best way to approach the 
problem.  

In our treatment, we consider a model of the cloud 
field in which clouds and clear sky are viewed, for the  



F. Malvagi and G.C. Pomraning  Vol. 6,  No. 9 /September  1993/ Atmos. Oceanic Opt.  611 
 

purpose of evaluating the radiative transfer within an 
atmospheric layer, as a random mixture of two 
components labelled by an index i = 0 (for clear sky) and 
i = 1 (for clouds). The first class of statistics we consider 
are Markovian statistics, described by the equation  
 

Prob (i → j) = ds / λi(s) 
,  j ≠ i , (2.1) 

 

where s is a spatial coordinate along the direction of sight 
Ω, and Prob (i → j) is the (differential) probability that 
point s + ds is in component j, given that point s is in 
component i. Here the λi(r, Ω) are the Markovian 

transition probabilities prescribed by the cloud field, and 
completely describe the clouds–clear sky mixture. The 
probabilities pi(r) of finding component i at position r are 

related to the λi(r, Ω) by the Chapman–Kolmogorov 

equations given by  
 

Ω⋅∇pi = pj/λj – pi/λi ,  i = 0, 1 ,  j ≠ i . (2.2) 
 

The dependence of the λi on Ω must be such that the pi as 

determined by Eq. (2.2) do not depend on Ω. In the 
following we will sometimes emphasize the special case of 
homogeneous (but anisotropic) statistics, for which the λi 

depend on the direction Ω, but not the space point r. The 
probabilities pi have the simple interpretation of being the 

volume fractions of the two components, and for 
homogeneous statistics they are related to the λi by the 

expression  
 

pi = λi/(λ0 + λ1) . (2.3) 
 

From Eq. (2.3) we see that in order for the pi to be 

independent of Ω, λ0 and λ1 must have the same 

dependence on Ω. The correlation length λc associated 

with this homogeneous Markovian mixture is given by14  
 

1/λc = 1/λ0 + 1/λ1 . (2.4) 
 

A more general class of statistics that have been 
considered are renewal statistics.25,7 Here we will only 
consider the homogeneous case, where the statistics are 
entirely described by the spatially independent chord 
length distribution functions fi(s), such that fi(s)ds is the 

probability that component i has a chord length along the 
line of sight Ω between s and s + ds. The average chord 
length in component i, which we denote by λi, is then 

given by  
 

λi = ⌡⌠
0

∞

 s fi(s) ds , (2.5) 

 
and the volume fraction pi are still related to the average 

chord lengths λi by Eq. (2.3). Homogeneous Markovian 

statistics correspond to the special case of having the 
alternating paths of clouds and clear sky populate, along 
any direction Ω, two exponential distributions with mean 
chord lengths λi(Ω), i.e.,  

 
fi(s) = 1/λi e

–s/λi . (2.6) 

 
In this homogeneous case Eq. (2.1) follows from 
Eq. (2.6), and the two definitions of λi are consistent.  

Returning to inhomogeneous Markovian statistics, 
the Ω dependence of λi(r, Ω) can be used to introduce 

directionally dependent cloud sizes and spacings into the 
stochastic formalism. As an example, for an atmospheric 
layer with a volume fraction pcloud occupied by clouds of 

average vertical (along the z axis) dimension H and 
average horizontal dimension D, we could write, recalling 
that the subscripts 0 and 1 refer to clear sky and clouds, 
respectively,  
 
p1 = pcloud ,  p0 = 1 – pcloud , (2.7) 

 

1
λ1

 = 
1

λcloud
 =⎝⎛ ⎠⎞

μ2

H2 + 
1 – μ2

D2

1/2

,  
1
λ0

 =⎝
⎛

⎠
⎞pcloud

1 – pcloud
 
1
λ1

 , (2.8) 

  
where μ is the cosine of the angle between the z axis and 
the direction Ω. Equation (2.8), which follows by 
characterizing the clouds as ellipses, accounts for clouds 
with an arbitrary, but constant within the layer, aspect 
ratio γ = D/H. For clouds with aspect ratio γ = 1 the 
transition probabilities λi became independent of Ω 

(isotropic statistics).  
In general, our Markovian model of the cloud field is 

completely described by two independent parameters [for 
instance, pcloud and λcloud(Ω)]. These are the statistical 

quantities that will need to be specified in order to 
determine the radiative transfer in the layer.  

 
3. STOCHASTIC RADIATIVE TRANSFER 

 
The radiative transfer equation we will be concerned 

with is written  
 

Ω⋅∇ I + σI = σs ⌡⌠
4π

 f(Ω⋅Ω′) I(Ω′) dΩ′ + S . (3.1) 

 
The dependent variable in Eq. (3.1) is the specific 
intensity of radiation I(r, Ω), with r and Ω denoting the 
spatial and angular (photon flight direction) variables, 
respectively. The quantity σ(r) is the macroscopic total 
cross section (extinction coefficient), σs(r) is the 

macroscopic scattering cross section, f(Ω ⋅ Ω′) is the single 
scatter angular redistribution function normalized 
according to  
 

⌡⌠
4π

 f(Ω⋅Ω′) dΩ′ = 2π ⌡⌠
–1

1

 f(ξ) dξ =

 

1 , (3.2) 

 
and S(r, Ω) denotes any emission source of photons. If one 
assumes local thermodynamic equilibrium for the matter, 
then S = σaB, where B is the Planck function and σa is 

the macroscopic absorption cross section corrected for 
induced emission. We have assumed no time dependence 
and coherent (no energy exchange) scattering in Eq. (3.1), 
but these simplifications are not necessary for the 
essentials of the models of stochastic transport we will 
consider. Thus Eq. (3.1) is a time–independent, 
monochromatic (gray) transfer equation, and there is no 
need to display the independent frequency variable which 
is simply a parameter.  

To treat the case of a binary statistical mixture, the 
quantities σ, σs, f, and S in Eq. (3.1) are considered as 

discrete random variables, each of which assumes, at any r,  



612   Atmos. Oceanic Opt.  /September  1993/  Vol. 6,  No. 9 F. Malvagi and G.C. Pomraning  
 

 

one of two sets of values characteristic of the two 
components constituting the mixture, namely, the clouds 
and the clear sky. We denote these two sets by σi, σsi, fi, 

and Si, where i = 0 for clear sky and i = 1 for clouds. 

That is, as a photon traverses the mixture along any path, 
it encounters alternating segments of clouds and clear sky, 
each of which has known deterministic values of σ, σs, f, 

and S. The stochastic nature of the problem enters 
through the statistics of the cloud field, i.e., through the 
statistical knowledge as to whether a cloud or clear sky is 
present at point r. Since σ, σs, f, and S in Eq. (3.1) are 

(two–state, discrete) random variables, the solution of 
Eq. (3.1) for I is stochastic, and we let <I> denote the 
ensemble–averaged intensity. (In the following, the 
notation <g> will always denote the average of the 
quantity g over all physical realizations of the statistics.) 
The goal in any statistical model of cloud–radiation 
interaction is to obtain a relatively simple and accurate set 
of equations for <I>. It may also be of interest to have a 
model for the higher moments of the stochastic radiation 
field, such as the variance.  

In order to derive equations for <I>, we introduce 
the characteristic function χi(r), defined, for each physical 

realization, as  
 

χi(r) = {1 , if position r is in component i,
0 , otherwise .  (3.3) 

 
It is easy to see that  
 
<χi(r)> = pi(r) , (3.4) 

 
that is, the ensemble average of the characteristic function 
is simply the volume fraction of component i. We now 
multiply Eq. (3.1) by χi and rewrite the result as  

 
Ω⋅∇(χi I) + σi χi I 

= 

= σsi ⌡⌠
4π

 fi(Ω⋅Ω′) χi I(Ω′) dΩ′ + χi Si + I Ω⋅∇χi , (3.5) 

 

where we have taken χi under the gradient sign and added 

the required extra term to the right–hand side. Taking the 
ensemble average of Eq. (3.5) over all possible physical 
realizations of the statistics, one obtains  
 

Ω⋅∇(pi Ii) + σi pi Ii = 
 

= σsi ⌡⌠
4π

 fi(Ω⋅Ω′) pi Ii(Ω′) dΩ′ + pi Si + <I Ω⋅∇χi> , (3.6) 

 

where we have defined  
 

pi Ii = <χi I> . (3.7) 
 

According to Eq. (3.7), Ii(r, Ω) can be interpreted as the 

conditional ensemble average of I, conditioned upon 
position r being in component i. In terms of the Ii, the 

ensemble averaged intensity <I> is given by  
 

<I> = p0 I0 + p1 I1 . (3.8) 
 

We note that Eq. (3.6) can be simply interpreted as 
describing the equation of transfer within component i, 
with the last term on the right–hand side providing a  

coupling between the two components. It has been shown 
(Adams et al.1) that this coupling term can be rewritten in 
a more physically meaningful way as  
 

<I Ω⋅∇χi> = pj I
–

j/λj – pi I
–

i/λi , (3.9) 
 

where I
–

i denotes a new conditional average of I, 

conditioned upon position r being an interface between 
component i and component j, with component i to the 
left of the interface (the vector Ω points from left to 
right). For inhomogeneous Markovian statistics, the 
λi(r, Ω) in Eq. (3.9) are simply the Markov transition 

lengths as defined by Eq. (2.1). For homogeneous non–
Markovian statistics, λi(Ω) has the physical interpretation 

of the mean chord length in component i. In the general 
case of inhomogeneous non–Markovian statistics, λi(r, Ω) 

is well defined mathematically in terms of the statistics, 
and while a precise physical interpretation is not apparent, 
λi in this case can be qualitatively interpreted as a 

characteristic chord length in component i in direction Ω. 
In all cases, the ratio pids/λi represents the probability of 

crossing an interface between component i and component 
j when moving from r to r + Ω ds. 

Using Eq. (3.9) in Eq. (3.6) we obtain  
 

Ω⋅∇(pi Ii)+σi pi Ii = σsi⌡⌠
4π

 fi(Ω⋅Ω′) pi Ii(Ω′) dΩ′ + 

+

 

pi Si+pj I
–

j/λj – pj I
–

i/λi . (3.10) 
 

Equation (3.10) represents an exact set of two equations 

for the four unknowns Ii and I
–

i, valid for arbitrary 

statistics, but underdetermined, since we have more 
unknowns than equations. At this point, either more 

equations, or closures that relates the I
–

i to the Ii, are 

needed to supplement Eq. (3.10).  
 

4. TWO MARKOVIAN CLOSURES 
 
The simplest closure proposed for Eq. (3.10) is given 

by the relation  
 

I
–

i = Ii
 
.  (4.1) 

 

The closed set of equations resulting from using Eq. (4.1) 
in Eq. (3.10) can be considered as a low–order model, and 
corresponds to the physical assumption that not only the 
underlying geometry, but the radiation field itself can be 
described as a Markovian process. Once the solutions for 
the Ii are obtained from this set, the ensemble averaged 

intensity <I> can be found from Eq. (3.8).  
The closure given by Eq. (4.1) is known to be exact for 

inhomogeneous Markovian statistics in the absence of photon 
scattering (σsi = 0), for which the Markovian assumption is 

satisfied. With scattering in the underlying transport 
problem, Eq. (4.1) is an approximation, but the resulting 
model for stochastic transport has been shown to be robust 
and accurate for Markovian statistics (Adams et al.1). For 
non–Markovian statistics, the closure given by Eq. (4.1) 
is an approximation in all cases, even in the absence of 
scattering. The issue of how to treat non–Markovian 
statistics is addressed in next section. The model expressed  
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by Eqs. (3.10) and (4.1) has been derived by several 
authors in alternative ways: using the method of 
smoothing (Pomraning,17 Levermore et al.6), utilizing the 
Liouville master equation (Vanderhaegen24), using reactor 
noise techniques (Sahni18), and making the assumption 
that the particle trajectories are uncorrelated (Sahni19). 
Of particular interest to the atmospheric sciences 
community has been the work of Titov and coauthors,27 in 
which they considered the non–scattering problem and the 
problem of clouds in a vacuum (Titov23). In their 
approach they first formally integrate the equation of 
transfer along the z axis, take ensemble averages, and then 
close their moment equations by making the assumption 
that the process is Markovian. Although their final result 
is in the form of integral equations for the ensemble 
averaged intensity, we show in the Appendix that their 
equations are equivalent to Eqs. (3.10) and (4.1), once we 
specialize them to their problem.  

The Markovian assumption that underlies Eq. (4.1) 
also allows one to obtain equations for the higher 
moments of the intensity. If we define the moments I(n)

i  

according to  
 

pi I
(n)
i (r, Ω) = <χi(r) I

(n)(r, Ω)>, (4.2) 
 

one can derive the equations (Boffi et al.3)  
 

Ω⋅∇( pi I
(n)
i ) + n σi pi I

(n)
i  =  

 

= n ⌡⌠
4π

 σsi(Ω⋅Ω′) pi I
(1)
i (Ω′) I(n–1)

i (Ω) dΩ′ + 

 

+ n pi Si I
(n–1)
i  + pj I

(n)
j /λj – pi I

(n)
i /λi . (4.3) 

 

Again, Eq. (4.3) is exact for the non–scattering case. In 
the presence of scattering it is only an approximation 
whose accuracy has not been tested, except for n = 1 and 
planar geometry, in which case Eq. (4.3) reduces to 
Eq. (3.10) closed by Eq. (4.1). From Eq. (4.3) it is also 
clear that the equations for the moments can be solved in 
succession.  

Returning to Eqs. (3.10) and (4.1), it is clear that 
all quantities can in principle depend upon all three 
spatial coordinates x, y, and z. In the restricted problem 
of three–dimensional clouds embedded in a planar layer, 
we make the assumption that the statistics and the 
boundary conditions in the layer are independent of x and 
y (in particular, this restricts the clouds to a common 
characteristic dimension along both x and y). If we 
further make the assumption that the physical properties 
of the clouds and of the clear sky do not change, on 
average, along the horizontal directions within a spatial 

cell, then the solution for the ensemble averages Ii and I
–

i 

will be independent of x and y, although they will still 
depend upon the azimuthal angle ϕ which, along with μ, 
defines Ω. However, it is only these ensemble averages in 
Eq. (3.10) which depend upon ϕ. This allows us to 
integrate Eq. (3.10) over ϕ to obtain the planar equation  
 

μ 
∂
∂z [ pi(z) ψi(z, μ)] + σi(z) pi(z) ψi(z, μ) = 

 

= σsi(z) ⌡⌠
–1

1

 gi(z, μ, μ′) pi(z) ψi(z, μ′) dμ′ + pi(z) Si(z, μ) + 

 

+ 
pj(z) ψ

–
j(z, μ)

λj(z, μ)  – 
pi(z) ψ

–
i(z, μ)

λi(z, μ)  , (4.4) 

 

where   
 

ψi(μ) = ⌡⌠
0

2π

 Ii(μ, ϕ) dϕ , (4.5) 

 

with a similar relationship between ψ
–

i(m) and I
–

i(μ, ϕ). 

The redistribution function gi is given by  
 

gi(μ, μ′) = ⌡⌠
0

2π

 fi(Ω⋅Ω′) dϕ , (4.6) 

 

and clearly has the normalization  
 

⌡⌠
–1

1

 gi(μ, μ′) dμ = 1 . (4.7) 

 

Equation (4.4) still allows for altitude dependence of 
the cross section, and altitude and zenith angle 
dependence of the cloud size and spacing. However, all 
horizontal effects of cloud–cloud and cloud–sky 
interactions are taken into account by the coupling term 
on the right–hand side, and any explicit dependence on x 
and y has disappeared; it has been "averaged out" in a 
rigorous, nonapproximate way by the ensemble averaging. 
In other words, Eq. (4.4) is a one–dimensional model that 
rigorously accounts for the three–dimensional geometry of 
the clouds under the assumed translational invariance of 
the cross sections and the λi. If for some reason one is 

interested in the ϕ dependence of the ensemble averaged 
intensities, one can expand the intensities in Eq. (3.10) in 
a Fourier series in ϕ, the result being an uncoupled set of 
equations for each Fourier component (Case and 
Zweifel4). Equation (4.4) is, in fact, the equation for the 
n = 0 cosine mode. The low–order closure for Eq. (4.4) 
equivalent to Eq. (4.1) is then obtained by setting  

 

ψ
–

i = ψi. (4.8) 
 

It has recently been suggested (Pomraning16) that in 
planar geometry the simple closure given by Eq. (4.8) can 
be replaced with an approximate set of two coupled 

transfer equations for the ψ
–

i. These equations are given 

by, for i = 0,1 and j ≠ i,   

μ 
∂
∂z ( pi ψ

–
i) + σi pi ψ

–
i = ⌡⌠

–1

0

 σsi(μ, μ′) pi ψ
–

j(μ′) dμ′ + 

 

+ ⌡⌠
0

1

 σsi(μ, μ′)pi ψ
–

i (μ′)dμ′ + 
pj ψ

–
j

λj
 – 

pi ψ
–

i

λi
 + piSi, μ > 0; (4.9) 

 

μ 
∂
∂z (pi ψ

–
i) + σi pi ψ

–
i = ⌡⌠

–1

0

 σsi(μ, μ′) pi ψ
–

i(μ′) dμ′ + 

 

+⌡⌠
0

1

 σsi(μ, μ′)pi ψ
–

j(μ′)dμ′ + 
pj ψ

–
j

λj
 – 

pi ψ
–

i

λi
 + piSi ,  μ < 0. (4.10) 
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Thus, a higher order model for the ψi(z, μ) consists of 

Eq. (4.4) coupled with Eqs. (4.9) and (4.10). Both the low 
order and the higher order models are tested numerically in 
Section 6.  

With regard to boundary conditions, we assume that 
the incoming intensity on the surface of the system is 
specified and nonstochastic. Then for each physical 
realization of the statistical mixture, the boundary condition 
on Eq. (3.1) is taken as  
 

I(rs, Ω) = F(rs, Ω) ,  n⋅Ω < 0 , (4.11) 
 

where n is a normal outward pointing unit vector at a 
surface point rs, and F is the specified boundary data. 

Equation (4.11) implies that all conditional ensemble 
averaged intensities satisfy the same boundary condition. 
In particular, we have  
 

Ii(rs, Ω) = I
–

i(rs, Ω) = F(rs, Ω) ,  n⋅Ω < 0 . (4.12) 
 

The azimuthally integrated intensities contained in 
Eq. (4.4) then satisfy   
 

ψi(zs, μ) = ψ
–

i(zs, μ) = G(zs, μ) ,  n⋅Ω < 0 , (4.13) 
 

where zs is a surface point of the planar system and  
 

G(zs, μ) = ⌡⌠
0

2π

 F(rs, Ω) dϕ . (4.14) 

 
5. A TREATMENT OF NON–MARKOVIAN 

STATISTICS 
 
The item we discuss in this section is the treatment of 

non–Markovian statistics. The models discussed in the last 
section were both derived for Markovian statistics, i.e., 
when along any line of sight the alternating segments of 
clouds and clear sky are exponentially distributed [see 
Eq. (2.6)]. The common feature of these models is that they 
manifest themselves in integro–differential equations. For 
non–Markovian statistics, i.e., for more general distribution 
functions fi(s), a statistical treatment of radiative transfer 

yields integral equations, arising from the theory of 
alternating renewal processes (Vanderhaegen,25 Levermore et 
al.7). This formalism, exact in the non–scattering case, can 
be generalized to include, in an approximate way, the 
scattering interaction (Pomraning14). The accuracy of this 
approximation has not been fully tested.  

For homogeneous statistics, these integral equations are 
of convolution type, and are readily solved by the Laplace 
transform. Levermore et al.7 have shown that certain 
characteristics, namely, the deep–in behavior and the mean 
distance to collision, of the non–Markovian solution can be 
captured by the Markovian models by introducing an 
effective correlation length λeff, which plays the role of λc 

as given by Eq. (2.4). This effective correlation length is 
given by  
 

λeff = q λc , (5.1) 
 

with λc given by Eq. (2.4) and  

 

q = 
1
σ0

 
⎣
⎡

⎦
⎤1

Q
~

0(σ0)
 – 

1
λ0

 + 
1
σ1

 
⎣
⎡

⎦
⎤1

Q
~

1(σ1)
 – 

1
λ1

 – 1 . (5.2) 

 

Here λi is the mean chord length in component i as given 

by Eq. (2.5) and Qi(s) is the probability that the chord 

length in component i exceeds s, and is related to the 
chord length distribution function fi(s) by  
 

Qi(s) = ⌡⌠
s

∞

 fi(s′) ds′ ,  i = 0, 1 , (5.3) 

 

Q
~

i(σi) is the Laplace transform of Qi(s) evaluated at a 

transform variable σi, i.e.,  
 

Q
~

i(σi) =
 ⌡⌠

0

∞

 e– σis Qi(s) ds . (5.4) 

 

It has been shown by Levermore et al.7 that q ≥ 0 for all 
chord lengths distributions. For Markovian statistics 
corresponding to Eq. (2.6), we have q = 1. In the special 
case in which the clear sky is treated as vacuum (σ0 = 0), 

a simple limiting process gives  
 

q = 
1
σ1

 
⎣
⎡

⎦
⎤1

Q
~

1(σ1)
 – 

1
λ1

 + 
V0

2λ2
0
 – 

1
2 . (5.5) 

 

Here λ0 is the mean spacing between clouds, and V0 is the 

corresponding variance of the clear sky chord length 
distribution function.  

Now, Eqs. (2.3) and (2.4) imply  
 

λi = λc/pj ,  j ≠ i . (5.6) 
 

Thus replacing the correlation length λc by qλc implies 

that the λi must be replaced by qλi, since the pi are taken 

as given, independent of the statistics. In summary, an 
approximate treatment for non–Markovian statistics is to 
use any of the Markovian models previously discussed, but 
with the first of Eq. (2.8) replaced by  
 

1
λ1

 = 
1

λcloud
 = q ⎝⎛ ⎠⎞

 μ2

H2 + 
1 – μ2

D2

1/2

 , (5.7) 

 

where q is given by Eq. (5.2). This approximate method 
of treating non–Markovian mixing statistics has been 
tested numerically by Levermore et al.7 and was shown to 
predict exact results, found by solving the renewal 
equations, quite well.  
 

6. NUMERICAL RESULTS 
 
In this section we present some numerical results 

obtained by solving the stochastic radiative transfer in an 
atmospheric layer as described by Eq. (4.4), supplemented 
with the low–order closure (4.8) (which we will refer to 
as Model 1), and the more complex closure given by 
Eqs. (4.9) and (4.10) (which we will refer to as Model 2). 
For some test problems we can compare our results to 
exact solutions. We also compare those two models to a 
simple fractional cloud approximation.  

The first problem we consider (Problem 1) is the case 
of a layer of thickness L populated with alternating layers 
of clouds and clear sky (which for our purposes we treat 
as a vacuum), with no internal sources of radiation. In the 
notation of Section 2, this corresponds to considering 
clouds with an unbounded aspect ratio (γ = ∞ or D = ∞).  
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While this problem has limited applicability to stratiform 
clouds, the main reason for considering it is that an 
explicit exact solution to this special stochastic problem is 
available for truly one–dimensional (or rod) geometry 
(Vanderhaegen and Deutsch,26 Pomraning,13 Stephens et 
al.21). This is mathematically equivalent to a two–stream 
approximation for the full planar problem, with the 
quadrature angles chosen at μ = ±1. Our purpose is then to 
use this problem as a test of the accuracy of Models 1 and 2. 
In particular, it has been argued (Sahni19) that the closure 
characterizing Model 1 [see Eq. (4.1)] is the least accurate in 
this case of one–dimensional geometry. The presumption 
then is that this test case can provide a qualitative but 
reliable estimate of the accuracy of Model 1, extendable to 
problems for which no exact solutions are available.  

We write the two–stream approximation to 
Eqs. (4.4) and (4.8) for a source free medium and 
homogeneous statistics as  
 

± 
dψ±

i

dz  + σi ψ
±
i  = 

σsi

2  (ψ+
i  + ψ–

i) + 
1
λi

 (ψ±
j + ψ±

i) , (6.1) 

 

where ψ+
i(z) and ψ–

i (z) are the intensities in the +z and –z 

directions, respectively. Here λ1 = λcloud = qH is the 

effective average vertical size of the clouds, and λ0 is 

given by the second of Eqs. (2.8). We note that for any 
cloud size distribution which allows the possibility of 
infinite size clouds (such as an exponential, i.e., 
Markovian, distribution which corresponds to q = 1), one 
would have to choose the atmospheric layer thickness L as 
infinite so that this layer would, for all realizations, 
completely contain all clouds. This points out one of the 
difficulties in using a Markovian model to describe an 
atmospheric layer in which all physical realizations 
completely contain the clouds in a layer of finite thickness 
L. Rather, one should use a cloud size distribution which 
involves some maximum allowable cloud size, with this 
maximum size being less than the layer thickness which 
contains all of the clouds. This in turn points out the 
importance of having a stochastic formalism available 
which allows for arbitrary cloud size distributions. In fact 
q, defined by Eq. (5.2), is the ingredient in the formalism 
described here which allows one to treat arbitrary cloud 
size distributions.  

In writing Eq. (6.1) we have treated the scattering 
as isotropic. Although the differential scattering cross 
section is very forwardly peaked for clouds, for thick 
systems (such as clouds) a cross section of the Henyey–
Greenstein or Mie scattering type can be adequately taken 
into account by using an effective cross section defined as  

 

σs,eff = σs(1 – μ
–

) , (6.2) 
 

where m
–

 is the average cosine of the scattering angle. We 
then interprete σsi in Eq. (6.1) as meaning σsi,eff. For 

Eq. (6.1) we use the boundary condition  
 

ψ+
i(0) = 1 ,  ψ–

i (L) = 0 . (6.3) 
 

In this two–stream approximation and in view of 
Eq. (6.3), the transmission probability T and reflection 
probability R are defined as  
 

T = 
<ψ+(L)>
< ψ+(0)>

 = <ψ+(L)>, R = 
<ψ–(0)>
< ψ+(0)>

 = <ψ–(0)>, (6.4) 

 

where  

<ψ±> =
 
p0ψ±

0 + p1ψ±
1 . (6.5) 

 

Analogously, the two–stream approximation to 
Model 2 can be written as  
 

± 
dψ±

i

dz  + σi ψ
±
i  = 

σsi
2  (ψ+

i  + ψ–
i) + 

1
λi

 (ψ
–±

j + ψ
–±

i) , (6.6) 

 

± 
dψ±

i

dz  + σi ψ
–±

i = 
σsi
2  (ψ

–±
i  + ψ

–å
j) + 

1
λi

 (ψ
–±

j + ψ
–±

i) . (6.7) 

 

As boundary conditions on Eqs. (6.6) and (6.7) we use  
 

ψ+
i(0) = ψ

–+
i(0) = 1 ,  ψ–

i (L) = ψ
–

–
i (L) = 0 . (6.8) 

 

The transmission and reflection are again given by Eq. (6.4).  
For this layered geometry we consider two sets of cross 

sections representative of longwave and shortwave 
calculations in cumulus clouds (Welch et al.28), respectively. 
The first set (which we will refer to as Case 1, and 
corresponds to purely absorbing clouds) is given by  
 

σ1 = 30 km–1 ,  σ0 = σs0 = σs1 = 0 , (6.9) 
 

where all the cross sections are taken as constant along the 
vertical direction. The second set (which we will refer to as 
Case 2, and corresponds to purely scattering clouds) is given by 
 

σ1 = σs1 = 10 km–1 ,  σ0 = σs0 = 0 . (6.10) 
 

In both Case 1 and Case 2 we take the total thickness of 
the layer to be the unit length, i.e.,  
 

L = 1 km . (6.11) 
 

Figure 1 shows T as a function of the effective cloud 
thickness λcloud for Case 1, as computed according to 

Models 1 and 2. Since these curves extend to λcloud > L = 1, 

this implies that certain realizations of the statistics 
correspond to the layer completely occupied by clouds. We 
have considered three values of the cloud volume fraction 
pcloud=p=0.1, 0.5, and 0.9. Models 1 and 2 gives the same result, 

which is exact for a Markovian cloud field. For Case 1 (purely 
absorbing clouds) we obviously have R = 0 and A = 1 – T, 
where A is the absorption probability for the layer. 

 
FIG. 1. Transmission versus effective cloud layer 
thickness for Problem 1 (parallel layers and two–stream 
approximation), values of the cross sections and total 
layer thickness corresponding to Case 1 (pure absorber), 
and three values of the cloud volume fraction p.  
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Figure 2 shows T vs. λcloud for Case 2. Here 

Models 1 and 2 give different results. The thick line 
indicates the exact solution computed according to 
Pomraning13 and for the case of an exponential 
distribution. We see that Model 2 gives a result that is 
very close to the exact solution. Model 1, while not as 
accurate as Model 2, still provides a useful 
approximation, within about 10%, to the exact solution. 
This is in accordance with the results reported by 
Adams et al.1 and Titov.23 We also note the interesting 
result that Model 1 always overestimates the 
transmission. A physical explanation can be argued in 
view of the fact that in Model 1 interface averages are 
approximated with volumetric averages. This has the 
effect of skewing the Model 1 results towards the 
solution of a problem in which the clouds and clear sky 
are completely decoupled, thus overestimating the 
transmission. In other words, for any problem of clouds 
in vacuum, Model 1 provides an upper bound for T. 
Model 2, while more accurate than Model 1, does not 
share this property, and in fact it sometimes 
overestimates and sometimes underestimates T. This is 
also in accord with the findings of Pomraning16 and 
Malvagi and Pomraning.10 For Case 2 (purely scattering 
clouds) we have R = 1 – T and A = 0.  

 

 
 

FIG. 2. Same as Figure 1, but with values of the cross 
sections corresponding to Case 2 (pure scatterer).  
 

The second problem we consider (Problem 2) is the 
more general problem of finite size clouds (D < ∞) 
imbedded in a layer of constant thickness L. Model 1 is 
now written, for homogeneous statistics and after dividing 
Eq. (4.4) by pi as  

 

μ 
∂ψi

∂z  + σiψi = 
σsi

2  ⌡⌠
–1

1

 ψi(μ) dμ + 
1
λi

 (ψj – ψi) , (6.12) 

 
where the λi(μ) are given by Eq. (5.7) and the second of 

Eqs. (2.8). We consider the generic boundary conditions 
on Eq. (6.12) given by  
 

ψi(0) = G(μ) ,  μ > 0 ;  ψi(L) = 0 ,  μ < 0 . (6.13) 

 
The transmission and reflection probabilities of the layer 
are now defined as  
 

T=

⌡⌠
0

1

 μ <ψi(L, μ)> dμ

⌡⌠
0

1

 μ F(μ) dμ

 , R=

⌡⌠
0

1

 μ <ψi(0, – μ)> dμ

⌡⌠
0

1

 μ F(μ) dμ

. (6.14) 

 
Model 2 can now be written as  
 

μ 
∂ψi

∂z  + σi ψi = 
σi
2  ⌡⌠

–1

1

 ψi(μ) dμ +
1
λi

 (ψ
–

j – ψ
–

i) , (6.15) 

 

μ 
∂ψ
–

i

∂z  + σi ψ
–

i = 

 

=
σi
2 

⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
–1

0

 ψ
–

j(μ) dμ + ⌡⌠
0

1

 ψ
–

i(μ) dμ + 
1
λi

 (ψ
–

j – ψ
–

i) , μ > 0, (6.16) 

 

μ 
∂ψ
–

i

∂z  + σi ψ
–

i = 

 

=
σi
2  

⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
–1

0

 ψ
–

i(μ) dμ + ⌡⌠
0

1

 ψ
–

j(μ) dμ + 
1
λi

 (ψ
–

j – ψ
–

i) , μ < 0. (6.17) 

 
For Eqs. (6.15) through (6.17) we impose the boundary 
conditions  
 

ψi(0)= ψ
–

i(0) = G(μ) , μ > 0 ; ψi(L) = ψ
–

i(L) = 0, μ < 0. (6.18) 

 
Reflection and transmission are still defined by 
Eq. (6.14).  

For the purpose of comparison, we also consider a 
fractional cloud model based on the solution of the two 
uncoupled equations  

 

μ 
∂ψ

∼
i

∂z  + σi ψ
∼

i = 
σsi
2  ⌡⌠

–1

1

 ψ
∼

i dμ , (6.19) 

 
with boundary conditions   
 

ψ
∼

i(0) = G(μ) ,  μ > 0 ;  ψ
∼

i(L) = 0 ,  μ < 0 . (6.20) 

 
An approximation to the average intensity is then 
computed according to the weighting formula  
 

<I(z, μ)> = (1 – fc) I
~

0(z, μ) + fc I
~

1(z, μ) , (6.21) 

 
where fc(μ0) is the probability of finding a cloud along a 

line of sight Ω forming with the vertical an angle whose 
cosine is μ0. This probability is simply one minus the 

probability of finding clear sky at each point along the 
line of sight. This latter probability is the product of p0, 

the probability of finding clear sky at the top of the layer, 

and Q
∧

0(L/μ0), the conditional probability (conditioned 

upon the top of the layer being clear sky) of finding a  
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clear sky chord length which exceeds the distance L/μ0 

through this layer along the line of sight. This conditional 
probability is discussed by Pomraning14 and Su and 
Pomraning.22 For homogeneous Markovian statistics we 
have  
 

fc(μ0) = 1 – p0Q
∧

0(L/μ0) = 1 – (1 – p1) × 

 

× exp ⎣
⎡

⎦
⎤– ⎝

⎛
⎠
⎞p1

1 – p1
 

L
μ0λ1(μ0)

 (6.22) 

 
We refer to the model expressed by Eqs. (6.19) through 
(6.22) as the Fractional Cloud Model. Transmission and 
reflection are still defined by Eqs. (6.14).  

For the values of the cross sections and the slab 
thickness we use the same two sets previously called 
Case 1 and Case 2. For Case 1 (longwave radiation) we 
choose isotropic incidence as the boundary condition, i.e.,  
 
G(μ) = 1 . (6.23) 
 

For Case 2 (shortwave radiation), the selected 
boundary condition is a beam incident at an angle θ0, i.e., 

 
G(μ) = δ(μ – μ0) , (6.24) 

 
where μ0 is the cosine of the angle θ0. The transfer 

equations are solved numerically using diamond 
differences in space, the discrete ordinate method with 
16 angles, and a power iteration on the scattering source 
(Duderstadt and Martin,5 Bell and Glasstone2). First 
we consider the case of isotropic statistics [i.e., 
λi ≠ λi(μ)]. This corresponds to considering clouds with 

aspect ratio equal to unity, i.e., H = D.  
Figure 3 shows T vs. pcloud for the value 

λcloud = 0.5 and values of the physical parameters 

corresponding to Case 1, as computed according to 
Models 1 and 2 and the Fractional Cloud Model. To 
compute the fractional cloud parameter fc, we have used 

exponentially distributed clouds and selected the zenith 
line of sight [this corresponds to setting μ0 = 1 in 

Eq. (6.22)]. Both Models 1 and 2 provide the same 
solution to the stochastic problem, which is exact for 
exponential distributions. The simple Fractional Cloud 
Model overestimates the transmission, but due to the 
high value of the extinction coefficient (σ1 = 30) the 

error never exceeds 10% of the incident radiation. 
Figures 4 through 6 show T vs. pcloud for the same 

problem, but with the values of the physical parameters 
corresponding to Case 2 and the three angles of 
incidence θ0 = 0, 30 and 60 degrees. To compute the 

fractional cloud parameter fc, the angle of the incident 

beam is now chosen as the line of sight. Here no exact 
solution is available, and we take the solution of 
Model 2 as the best available approximation. Based on 
this assumption, Model 1 gives a fairly accurate 
approximation and, as noted before, consistently 
overestimates the transmission. The Fractional Cloud 
Model in this case gives substantially larger errors, 
performing the worst for intermediate values of pcloud. 

The behavior of the three models shows little 
dependence on the angle of incidence.  
 

 
 
FIG. 3. Transmission versus cloud volume fraction for 
Problem 2 (finite size clouds imbedded in a layer of 
thickness L), values of the cross sections and total layer 
thickness corresponding to Case 1, cloud average size 
H = 0.5 km, isotropic statistics (cloud aspect ratio 
γ = D/H = 1) and isotropic incidence.  
 

 
 

FIG. 4. Same as Figure 3, but with values of the cross 
sections corresponding to Case 2 and a beam incident 
upon the layer at an angle θ0 = 0°.  
 

 
 

FIG. 5. Same as Figure 4, but with θ0 = 30°.  
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FIG. 6. Same as Figure 4, but with θ0 = 60°.  
 

Finally, we consider the effects of the cloud aspect 
ratio on the predictions of our models. Figure 7 shows T vs. 
pcloud for values of the physical parameters corresponding to 

Case 1, as computed according to Model 2 with values of the 
aspect ratio γ = 0.1 (D = 0.5 and H = 5), γ = 1 (D = 0.5 
and H = 0.5), and γ = 10 (D = 5 and H = 0.5). Figures 8 
through 10 show T vs. pcloud for the same problem, but with 

the values of the physical parameters corresponding to 
Case 2 and the three angles of incidence θ0 = 0, 30 and 60 

degrees. We see that the value of the transmission of the 
layer does depend, although not dramatically, on the aspect 
ratio of the clouds, which is thus an important parameter in 
determining heating rates. Intercomparisons of the three 
models for various values of the aspect ratio, not reported 
here, show the same trends seen in Figs. 3 through 6.  

 

 
 

FIG. 7. Transmission versus cloud volume fraction for 
Problem 2, values of the cross sections and total layer 
thickness corresponding to Case 1, three values of the 
aspect ratio γ, and isotropic incidence upon the layer. 
All curves are computed according to Model 2.  
 

7. SUMMARY AND CONCLUSIONS 
 
In this paper we have presented what we consider a 

promising approach for the treatment of radiative transfer 
through an atmospheric layer populated with randomly  

distributed clouds. This approach treats the radiative 
transfer problem as a stochastic process, and provides 
predictions for the average radiative intensity once the 
statistical description of the cloud field is given. This 
approach is entirely based on the properties of the 
equation of transfer itself, and there is no need to use 
approximate empirical relations.   

 

 
 

FIG. 8. Same as Figure 7, but with values of the cross 
sections corresponding to Case 2 and a beam incident 
upon the layer at an angle θ0 = 0°.  
 

 
 

FIG. 9. Same as Figure 8, but with θ0 = 30°.  
 

 
 

FIG. 10. Same as Figure 8, but with θ0 = 60°.  



F. Malvagi and G.C. Pomraning  Vol. 6,  No. 9 /September  1993/ Atmos. Oceanic Opt.  619 
 

In dealing with the stochastic equation of transfer, one 
is confronted with a problem of closure, since the balance 
equation for the volumetric averages involves interface 
averages. We have discussed two possible closures. The 
simplest closure produces a set of two coupled integro–
differential equations [Eq. (3.10) and (4.1)], which we 
referred to as Model 1. This model is exact for purely 
absorbing media with Markovian statistics, but approximate 
when scattering is present and/or if the statistics are non–
Markovian. This model is also shown in an appendix to this 
paper to be equivalent to the Markovian model of Titov and 
coauthors involving integral equations, in the particular case 
considered by those authors. A more sophisticated closure for 
planar geometry, Eqs. (4.4), (4.9), and (4.10), produces a 
set of four coupled integro–differential equations, which we 
referred to as Model 2. This second model, while still 
approximate when scattering is present, is shown to give 
very accurate predictions in the cases when exact solutions 
are available. A simple model for the higher moments of the 
radiation field has also been proposed [Eq. (4.3)], although 
its accuracy has not been thoroughly tested. The models of 
stochastic radiative transfer discussed here apply equally 
well to all wavelengths. In particular, they treat the 
incoming short wavelengths and the re–emitted long 
wavelengths by the same formalism. It should be emphasized 
that both of these models are formulated for non–Markovian 
statistics (non–exponential distributions). This is an 
important issue, since experimental characterizations of 
cloud fields often employ power law distributions.  

Both models account for non–homogeneous statistics, 
and in particular allow for vertical variations of the 
statistical characteristics of the cloud field. Also, these 
models, while presented here for a mixture of two 
components (clouds and clear sky), can be easily generalized 
to a mixture of an arbitrary number of components (Malvagi 
and Pomraning9). For instance, clear sky and several kinds 
of clouds with different physical properties can be treated 
simultaneously in a single set of coupled equations. 
Combining these two features, inhomogeneous statistics and 
an arbitrary number of components, one could in principle 
solve for the radiative intensity in the entire vertical 
extension of the single cell atmospheric column at once, 
without the need to subdivide it into relatively thin layers 
(except for numerical discretization purposes).  

Numerical results for a number of test problems clearly 
indicate that the discrepancy between the predictions of the 
stochastic transfer model and a specific fractional cloud 
model can be quite significant. These results thus underscore 
the need for an approach to the problem of transfer in 
partially cloudy atmospheres that is more realistic than the 
ones currently in use. Any existing numerical algorithms for 
the solution of the equation of transfer, such as the popular 
two–stream (diffusive) model, apply directly to our 
stochastic method. Thus, it would be relatively 
straightforward to incorporate our method into existing 
GCM radiative transfer treatments. We also note in this 
regard that the variation of cloud characteristics and 
fractional cloud cover are easily incorporated. The various 
parameters that enter are simply allowed to be spatially 
(both vertically and laterally) dependent.  

The main issue at this stage of development is the 
availability of those cloud field parameters necessary to 
implement this stochastic radiative transfer technique. In all 
instances, one requires the radiative properties, namely the 
total and scattering cross section and the scattering phase 
functions for pure clouds and clear atmosphere. In the 
simplest model of Markovian statistics, one requires in 
addition the mean cloud size and the cloud volume fraction 
(or the mean cloud spacing). The theory allows these lengths 
to be direction dependent. For non–Markovian statistics,  

one requires the distributions of both the cloud size and the 
cloud spacing, although numerical tests seem to indicate 
that, to a good approximation, only the mean and the 
variance of these distributions affect the radiative transfer 
(Levermore et al.7).  

The advantage of the stochastic approach is that it can 
accurately calculate the average radiative heating rates 
through a broken cloud layer without requiring an exact 
description of the cloud geometry. The methods discussed 
here provide the average solution for this radiative transfer 
problem that depends on macroscopic properties of each 
component in the broken cloud layer and the statistical 
description (size and distribution) of the clouds within the 
layer. Some observational data of this type are already 
available and more will become available in the future. As 
GCMs become more sophisticated in their modeling of 
clouds, it is expected that they will be able to provide the 
type of cloud data required by a stochastic treatment of 
radiative transfer. Our hope is that this approach would 
significantly improve our understanding of cloud–radiation 
feedback mechanisms and our ability to predict climate 
changes.  
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APPENDIX – THE TITOV MODEL 
REFORMULATED 

 
We now consider the model introduced by Titov23 

within the atmospheric radiation context, and show that 
its integral equation formalism is equivalent to the low 
order model described by Eq. (3.10) with the closure 
(4.1). The case considered by Titov assumed negligible 
emission (Si = 0), and treated the clear sky as completely 

transparent (σ0 = σs0 = 0). To simplify the notation 

somewhat, we introduce the spatial variable s along the 
direction Ω (so that Ω ⋅ ∇ = d/ds), and define the 
collision operators Ci as 

 

Ci( pi Ii) = σi pi Ii – σsi ⌡⌠
4π

 fi(Ω⋅Ω′) pi Ii(Ω′) dΩ′ . (A.1) 

 
Then the Titov model, derived under the Markovian 
assumption for both the mixing and transport processes, is 
given by the two coupled integral equations  
 

<I(s)> + ⌡⌠
0

s

 C1 p1(s′) I1(s′) ds′ =
 

F ; (A.2) 

p1(s) I1(s) + ⌡⌠
0

s

 P11(s′, s) C1 p1(s′) I1(s′) ds′ = p1 F .(A.3) 

 
Here the surface of the system is taken as s = 0, and F 
denotes the incoming intensity at that point. The 
remaining notation is the same as introduced earlier, with 
Pij(s′, s) being defined as the (Markovian) conditional 

probability that position s is in mixture component j, 
given that position s′ is in component i. These quantities 
satisfy the (forward form) Chapman–Kolmogorov 
equations given by   
 

∂Pii/∂s = Pij/λj – Pii/λi ,  j ≠ i ; (A.4) 
 

∂Pij/∂s = Pii/λi – Pij/λj ,  j ≠ i , (A.5) 
 

with boundary conditions  
 

Pii(s′, s′) = 1 ; (A.6) 
 

Pij(s′, s′) = 0 ,  j ≠ i . (A.7) 

 
It is clear from their definition that the Pij(s′, s) satisfy 

the constraint  
 
Pii + Pij = 1 ,  j ≠ i . (A.8) 

 
We now want to cast the integral Titov model given 

by Eqs. (A.2) and (A.3) into an equivalent differential 
form. First we subtract Eq. (A.3) from Eq. (A.2) to find, 
recalling Eq. (3.8),  
 

p0(s)I0(s) + ⌡⌠
0

s

 P10(s′, s) C1 p1(s′) I1(s′) ds′ = p0(s)F, (A.9) 

 
where we have used p0 + p1 = 1 and [see Eq. (A.8)] 

P11 + P10 = 1. If we differentiate Eqs. (A.2) and (A.3) we 

find  
 
d<I(s)>

ds  + C1 p1(s) I1(s) = 0 ; (A.10) 

 

d[ p1( s) I1( s)]
ds  + C1 p1( s) I1( s) + 

 

+ ⌡
⌠
0

s

 
∂P11(s′, s)

∂s  C1 p1(s′) I1(s′) ds′ = 
dp1(s)

ds  F , (A.11) 

 
where we have made use of Eq. (A.6). We now use the 
first of the Chapman–Kolmogorov equations given by 
Eq. (A.4) with i = 1 and j = 0 to rewrite Eq. (A.11) as  
 

d[p1(s) I1( s)]
ds  + C1 p1( s) I1( s) –  

 

– 
1

λ1( s) ⌡⌠
0

s

 P11(s′, s) C1 p1( s′) I1( s′) ds′ +  

 

+ 1
λ0( s)

 ⌡⌠
0

s

 P10(s′, s) C1 p1( s′) I1( s′) ds′ = 
dp1( s)

ds  F. (A.12) 

 
Equations (A.3) and (A.9) can now be used to eliminate 
the integral terms in Eq. (A.12) and obtain, upon 
collecting terms,  
 

d[p1(s) I1(s)]
ds  + C1 p1(s) I1(s) = 

 

= 
p0(s)

λ0(s)
 I0(s) – 

p1(s)

λ1(s)
 I1(s) +⎣

⎡
⎦
⎤dp1(s)

ds  + 
p1(s)

λ1(s)
 – 

p0(s)

λ0(s)
F. (A.13) 

 
We now recall the Chapman–Kolmogorov differential 
equation for the pi(s) as given by Eq. (2.2). We then see 

that the coefficient of F in Eq. (A.13) is zero and we have  
 

d[p1(s) I1(s)]
ds +C1p1(s)I1(s) = 

p0(s)

λ0(s)
 I0(s) – 

p1(s)

λ1(s)
 I1(s). (A.14) 
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The final algebraic manipulation is to subtract Eq. (A.14) 
from Eq. (A.10). The result is  
 

d[p0(s) I0(s)]
ds  = 

p1(s)

λ1(s)
 I1(s) – 

p0(s)

λ0(s)
 I0(s) . (A.15) 

 

Equations (A.14) and (A.15) are the final results of our 
analysis, and are entirely equivalent in content to the 
integral equations of Titov given by Eqs. (A.2) and (A.3) 
once they are supplemented with the identity  
 

<I(s)> = p0(s) I0(s) + p1(s) I1(s)  (A.16) 
 

and the initial conditions   
 

I0(0) = I1(0) = F .  (A.17) 

We write these two equations in a more explicit form by 
using d/ds = Ω ⋅ ∇ and the definition of the operator C1 

given by Eq. (A.1). We then have  

Ω⋅∇ (p0 I0) = p1 I1/λ1 – p0 I0/λ 0 , (A.18) 

 
Ω⋅∇ (p1 I1) + σ1 p1 I1 =  

 

= σs1 ⌡⌠
4π

 f1(Ω⋅Ω′) p1I1(Ω′) dΩ′ + p0 I0/λ0 – p1 I1/λ1. (A.19) 

 
In this form, it is clear that the Titov integral 

model is a special case of the Markovian low order 
model. This special case is the case corresponding to no 
emission (Si = 0), no interaction between the radiation 

and the clear sky (σ0 = σs0 = 0), and Markovian 

statistics. Thus the rudimentary differential model 
effectively generalizes the Titov model. It is clear that 
the generalization to include emission and photon–sky 
interaction can be easily incorporated into the Titov 
integral equations as well.  

 
 


