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Resonance functions for semiclassical molecular line broadening theory are calculated in the 

exact trajectory model for molecules environed by neutral gas atoms. The calculations are performed 
for a set of values of the Lennard–Jones potential parameters. Model analytic representations are 
constructed for resonance functions dependent on these parameters. The model functions are tested in 
the calculations of the scattering cross section of rotational lines of the HCl molecule in the system 
HCl–Ar and rotational line half-widths of the radical OH in the system OH–Ar. 

 

Introduction 
 

The collisional broadening of molecular spectral 
lines has been studied experimentally and theoretically 
for tens of years. The theory of spectral line shapes 
near the line center and at low pressures for 
nonoverlapping lines is well developed and reduces to 
computation of the complex scattering matrix S, 
from which the broadening coefficients γ and the line 
center shift coefficients δ are determined. At present, 
several approaches to the computation are used.1,2 In 
completely quantum methods, such as CC method,3 
intramolecular motions (rotation and vibration), and 
relative translation motion are considered from the 
quantum positions. This requires a large computer 
resource, therefore, the method is realized by now for 
simple systems of interacting molecules. 

The relative motion trajectory in semiclassical 
calculation methods is defined by classical motion 
equations, including isotropic interaction potential 
U(R), where R is the distance between centers of mass 

of interacting molecules. The special case U(R) = 0 

results in approximation of linear trajectories. The 
most complete form of the semiclassical approach is 
developed in Ref. 4 (NG approach); where the relative 
motion trajectory is computed for a series of points, 
which then are used to compute the matrix elements 
of the intermolecular potential in the basis of 
rotational-vibrational wave functions of an absorbing 
molecule. The NG formalism is considered as a classical 
analogue of the quantum CC method. Similar to the 
CC method, this formalism is realized for simple systems 
of XY–A type, where A are atoms of neutral gases. 
  Certain approximations in classical motion 

equations and simulation of isotropic intermolecular 
potential in the form of Lennard–Jones allowed one 
to introduce the parabolic trajectory (PT) model.5 The 

method is known as the Robert–Bonamy formalism 
and is widely used. It significantly simplifies the 
scheme of γ and δ calculation as compared to CC and 

NG methods. Resonance functions, included into  
the method, were obtained in analytical form with 

accounting for the dependence on parameters of 
intermolecular interaction potential, in contrast to 
the straight-line trajectory approximation. 

S-matrix in the second order of perturbation 
theory is represented as the sum of products of line 
strengths and resonance functions. The resonance 
functions enter into the S-matrix computation scheme 
as multipliers. They are Fourier transforms of 
intermolecular interaction potential; their arguments 
are determined by the balance of the internal energy, 
released and received in collisions of interacting 

molecules. A general expression for resonance 

functions, following from the classical motion 

equations, is given in Ref. 6 for any form of isotropic 
intermolecular potential. The expression was used1,7,8 
for computing real and imaginary parts of resonance 
functions for electrostatic and polarization (induction 
and dispersion) contributions, where the model 
potential was used for the latter. 

This paper continues our earlier works7,8 and 
presents computational results for resonance functions 
for the intermolecular potential, chosen in the form 
of sum of pair interaction potentials. Besides, the 
parameters of model resonance functions, obtained in 
Refs. 1, 7, and 8, are improved. The improvement 
relates to the fact that numerical values of the 
resonance functions have been obtained for a wider 
set of parameters of the model isotropic potential in 
the form of Lennard–Jones. Model resonance functions 
have been tested in calculations of scattering cross 
section of HCl rotational lines in the system HCl–Ar 
and of the broadening coefficient γ of rotational lines 
of radical OH in the system OH–Ar. 

 

1. General relations 
 

The relative motion trajectory of interacting 

particles (i.e., two variables: the distance R(t) and 
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polar angle ϕ(t)) is required for the resonance function 
computation. The trajectory is determined by the 
isotropic part of the interaction potential with the use 
of ordinary equations of classical mechanics,9 which 
have the form 

 c
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where y = (R/rc)
2; v is the relative velocity of 

colliding particles; b is the impact parameter; rc is 
the closest approach distance; function f(y) depends 
on the isotropic interaction potential, which is 
defined as the sum 
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of electrostatic (V 

elec
) and atom–atom (V 

1,2
at-at

) 
potentials of interaction between molecules 1 and 2, 
which is determined by the pair Lennard–Jones 

potentials. The V 

1,2
at-at

 potential simulates the polarization 
contribution into the intermolecular potential; in 
which the isotropic part is distinguished 
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used for resonance functions computation, and 
anisotropic one, which is reduced to the same form as 
V 

elec and then is used to compute the transaction 
functions S(b) dependent on the parameters dij and 
eij, from the matrix S. 

When the potential U(R) is chosen in form (5), 
 

 f(y) = (y – 1) + λ[β12(1 – y–5) – β6(1 – y–2)]; (6) 

 12 6
c c( / ) ( / ) 1– ( – );b r v v= = λ β β  

 β = (σ/rc); 

 λ = 8ε/(mv2), (7) 

where m is the reduced mass of colliding molecules 
(particles), the velocity vc is defined like in Ref. 5. 

The real parts 1 2( , )
c( )pl l

pf k
′

 of the resonance functions 

are defined by the equation2 
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where N is the normalization factor; l1 and l2 are the 
numbers determining the multipolarity of potential (4) 
expansion; l = l1 + l2 and kñ = 2πcb(ωii′ + ω22′)/v; ω are 
the transition frequencies of the main (with indices I 
and i ′) and perturbing (with indices 2 and 2′) 
molecules. In terms of the variables u = (y – 1)1/2, 
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The coefficients a(l, m, s) are obtained from the 
equations, connecting spherical harmonics with the 
trigonometric functions cos ϕ and sin ϕ (see, e.g., 
Ref. 10). The closest approach distance rc is defined 
as the solution of equation 

 λ[β12 – β6] + (b*)2β2 – 1 = 0, (10) 

where b* = b/σ. A general expression for resonance 
functions, dependent on the integrals in Eq. (9), was 
obtained in Ref. 6. The Robert–Bonamy computation 
scheme,5 where resonance functions, obtained in the 
model of “exact” trajectories (by equations from 

Ref. 6), are used instead of the parabolic trajectory 
model, is called ÅÒ (exact trajectory) approximation. 
 

2. Approximations 
 

The integrals in Eq. (9) in a number of cases can 
be expressed analytically. In the first approximation 
(straight-line trajectory approximation) U(R) = 0 
(λ = 0 or β = 0); f (y) = (y – 1) from Eq. (6), rc = b 
from Eq. (10), which gives A0(y, λ = 0) = u and 

R2
 = b2

 + vt2, A2(y, λ = 0) = arctan(u). Resonance 
functions for this case were computed in a series of 
works.2,11–13 To obtain the second approximation, let 
us expand the function f (y) from Eq. (6) in a Taylor 
series about y0 = 1 and limit it to the first terms: 
 

 f (y) = f (y0 = 1) + f ′ (y0 = 1) (y – 1)+ … . (11) 

Here f (y0 = 1) = 0, 

 f ′ (y0 = 1) = 1 + λ [5β12 – 2β6] = (v 

c′  /v)2.  (12) 

The velocity v 

c′ was introduced in Ref. 5.  
Equation (3) is integrated analytically and 

results in equations 

 R(t)2 = r 

c
2
 + (v 

c′)t
2; (13) 
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c′) arctan(R2/r 

c
2
 – 1)1/ 2. (14) 

What about interactions, for which R ≅ rc and 

vc ≅ v
 

c′, then the coefficient in Eq. (14) can be 
inserted into the argument; in this case 
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Equation (15) differs from the corresponding one 
for sin2ϕ [Ref. 15] in the denominator, where the 

velocity vc is replaced by v 

c′. Equations for a series of 
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resonance functions in the Robert–Bonamy formalism 
(in the parabolic trajectories approximation) are 
given in Ref. 5. 

 

3. Computation scheme 
 

At the first stage, the integrals An(y, λ, β) from 
Eq. (3) for different y, λ, and β are computed at the 
step Δy = 0.2 for 1 ≤ y ≤ 5 and at the step Δy = 0.5 for 
5 < y ≤ 9 at the points λ = 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 
3.5 at β = 0.3; 0.5; 0.7; 0.8; 0.85; 0.9; 0.95; 1.0; 
1.01; 1.02; 1.04; 1.08. At the second stage, the 
integrals An(y, λ, β) are approximated by the equations 
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When approximating by Eqs. (17) and (18), the 
fact that A0(y, λ = 0) = u and A2(y, λ = 0) = 
= arctan(u) in the straight-line trajectory 
approximation is taken into account. Parameters from 
Eq. (18) are given in Table 1. 

 
Table 1. Parameters from Eq. (18) determining  

the trajectory of interacting particles  
for the Lennard-Jones potential 

Parameter Value Parameter Value Parameter Value

b11 0.2867 b21 –0.3374 c11 0.3513

b12 0.5577 b22 0.5173 c12 0.5441

b13 1.7291 b23 1.4561 c13 1.5409

 
Using Eqs. (16)–(18) and parameters from 

Table 1, numerical values of the resonance functions  
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are obtained from interaction potential (5) for each 
pair of λ and β and the argument kñ from 0 to 7.5. 
These resonance functions appear in the transaction 
functions S(b) for the “molecule–neutral gas atom” 
systems (l2 = 0), when the expansion of atom–atom 
potential (4) is limited to the terms with l1 = 1, 2. 
Model interaction potentials are often considered in 
the literature as well. Thus, the system HCl–Ar is 
considered in Ref. 5 to test the suggested method; 
the interaction potential was chosen in the form 

 V(R, θ) = V0(R) + V1(R, θ) + V2(R, θ) = 

 = 4ε{(σ/R)12
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where P1(cosθ) and P2(cosθ) are the Legendre 
polinomials (θ = π/2 – ϕ). For this potential, the 
addition resonance functions (1,
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4. Approximation of the real parts  
of resonance functions 

 
To use resonance functions in computations of 

coefficients of line broadening and shift, it is 
necessary to know their explicit dependence on λ and 
β, because γ and δ computation schemes in general 
case include integrating over b (or rc) and the 
velocity v, but, according to Eqs. (7) and (10), 
λ = λ(b, v), β = β(b, v). In this work (like in Refs. 1, 
7, and 8) the resonance functions f(x, λ, β) (all 
indices are omitted, x ≡ kc) are approximated by the 
functions 

 f 

(m)(x, λ, β) = a1(λ, β) (tanh[z(λ, β)] – 1); 

 z(λ, β) = α(λ, β) [x – xe(λ, β)], (21) 

where 

 a1(λ, β) = a10 + a11{tanh[a1β(β – β1e)] + 

 + (tanh[a1β(β – β1e)])
2}; 

 α(λ, β) = α0 + αλββ λβ
2; 

 x
e
(λ, β) = x

e0 + x
eλββ λβ

2.  (22) 

The parameters a10, a11, a1β, α0, …, x
eλββ in Eq. (22) 

were determined from fitting of the 
1 2

( )
, ( , , )m

l l
f x λ β  to the 

values of exact functions 1 2( , )
'( , , )pl l

pf x λ β  for different x, 

λ, and β. Functions (21) can be considered as the 
model representations for resonance functions, 
obtained in the model of exact trajectories (MET 
resonance functions). Parameters for these functions 
are given in Tables 2 and 3. 

Figure 1 shows the comparison of the resonance 
function g1(x) = (2, 

0)f 

6
6(x), obtained in different 

approximations. 
For exact comparison, the expression for g1(x) 

from the PT model5 is multiplied by (v 

c′/v)2, which 
enters into the transaction functions S(b) as a 
multiplier, in contrast to the multiplier (1/v)2 for 
the MET function S(b). The behavior of g1(x) 
evidently differs in different approximations, 
especially at β ≥ 1. This is true for all functions 
considered in this work. 
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Table 2. Parameters of the model (1, 

0)f 

ð

ð functions 

Parameter (1,
 

0)f 

7
7 

(1,
 

0)f 

9
9 

(1,
 

0)f 

12
12 

(1,
 

0)f 

13
13 

(1,
 

0)f 

15
15 

 β ≤ 1.0 
a10 –0.6593 ± 0.0072 –0.6839 ± 0.01368 –0.775 ± 0.013 –0.7472 ± 0.0168 –0.7714 ± 0.0187
a11 0.2965 ± 0.0060 0.3371 ± 0.01558 0.360 ± 0.005 0.3726 ± 0.0162 0.3854 ± 0.0164
a1β 8.3947 ± 0.2986 6.911 ± 0.632 9.054 ± 0.250 7.178 ± 0.667 7.277 ± 0.681

β1e 0.8159 ± 0.1685 0.805 ± 0.003 0.810 ± 0.017 0.800 ± 0.0041 0.800 ± 0.004

α0 0.3957 ± 0.01714 0.3263 ± 0.0218 0.274 ± 0.007 0.2392 ± 0.0171 0.2132 ± 0.0157

αλββ 0.2773 ± 0.0233 0.3099 ± 0.0369 0.131 ± 0.013 0.2642 ± 0.0308 0.2464 ± 0.0286
xe 1.6878 ± 0.0407 1.886 ± 0.0736 1.572 ± 0.0332 1.946 ± 0.101 1.957 ± 0.112
xeλββ 0.35463 ± 0.0244 0.2469 ± 0.0364 0.720 ± 0.0353 0.3740 ± 0.0470 0.4392 ± 0.0515
 β > 1.0 
a10 –0.5781 ± 0.0123 –0.5166 ± 0.0133 –0.5093 ± 0.0410 –0.4708 ± 0.0128 –0.4550 ± 0.0125
α0 0.2460 ± 0.0062  0.1933 ± 0.0063 0.1647 ± 0.0069 0.15193 ± 0.00531 0.13331 ± 0.0049

αλββ –0.03106 ± 0.0013  –0.02680 ± 0.0013 –0.02258 ± 0.003 –0.02149 ± 0.0010 –0.01897 ± 0.0009
xe 0.0 0.0 0.0 0.0 0.0 

xeλββ –1.8498 ± 0.140   –2.9427 ± 0.1659 –3.3316 ± 0.93  –3.9942 ± 0.2648 –4.6549 ± 0.3182

 
Table 3. Parameters of the model (2, 
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ð
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Parameter (2,
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6
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8
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10 

(2,
 

0)f 

12
12 

(2,
 

0)f 

14
14 

(2,
 

0)f 

16
16 

 β ≤ 1.0 
a10 –0.5539 ± 0.0032  –0.5723 ± 0.007 –0.5986 ± 0.0083 –0.586 ± 0.002 –0.6491 ± 0.0107 –0.6716 ± 0.0118
a11 0.2527 ± 0.0064 0.2521 ± 0.0100 0.2724 ± 0.0102 0.292 ± 0.006 0.3053 ± 0.0103 0.3187 ± 0.0110

a1β 6.9429 ± 0.2582 6.806 ± 0.515 6.942 ± 0.511 6.921 ± 0.246 7.164 ± 0.511 7.256 ± 0.513

β1e 0.8221 ± 0.1658 0.797 ± 0.003 0.7956 ± 0.003 0.822 ± 0.001 0.794 ± 0.003 0.7930 ± 0.003

α0 0.4023 ± 0.00853 0.3925 ± 0.025 0.3254 ± 0.0204 0.318 ± 0.006 0.2454 ± 0.0155 0.2188 ± 0.014

αλββ 0.1928 ± 0.0145 0.3016 ± 0.042 0.2625 ± 0.0353 0.170 ± 0.011 0.2207 ± 0.027 0.2082 ± 0.025
xe 2.8459 ± 0.0275 2.9533 ± 0.0651 2.9759 ± 0.0765 2.860 ± 0.035 2.9844 ± 0.0979 2.9825 ± 0.1081

xeλββ 0.4416 ± 0.0201 0.25456 ± 0.0368 0.30078 ± 0.0423 0.531 ± 0.023 0.3891 ± 0.051 0.4325 ± 0.0550
 β > 1.0 
a10 –0.6797 ± 0.0151 –0.5979 ± 0.0131  –0.5492 ± 0.0129 –0.5248 ± 0.0109 –0.4926 ± 0.0124 –0.47450 ± 0.0122
α0  0.2400 ± 0.0074 0.1938 ± 0.0054 0.1651 ± 0.0050 0.1405 ± 0.0039 0.1321 ± 0.0045 0.1220 ± 0.0044

αλββ –0.0293 ± 0.0032 –0.0255 ± 0.0012 –0.02254 ± 0.0010 –0.01999 ± 0.0008–0.01848 ± 0.0010 –0.01711 ± 0.0008
xe       

xeλββ –1.7284 ± 0.1506 –2.5585 ± 0.1306 –3.2862 ± 0.1797 4.2271 ± 0.2136 –4.4295 ± 0.2851 –4.8757 ± 0.3428
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Fig. 1. Resonance function g1(x) = (2, 

0)f 

6
6(x), obtained for two sets of intermolecular potential parameters (λ = 2.0; β = 0.75) 

(a) and (λ = 2.0; β = 1.0) (b) in the straight-line (the function is independent of potential parameters) (1) and parabolic (2) 
trajectory approximations; 3 corresponds to model function (21) with the parameters from Table 3. 

 

 

5. Imaginary parts  
of resonance functions 

 

Imaginary parts 1 2( , ) ( , , )pl l
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λ β  of the resonance 
functions were computed by the equation 
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where Ð.P. means the principal part of the integral 
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at À = 400 and δ = 10–12, while for real parts of 
resonance functions their model approximations (21) 
and (22) were used with parameters from Tables 2 
and 3. 

To approximate the values of functions If(x, λ, β) 
(with an arbitrary set of indices), obtained by 
Eq. (23), the model  
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0( , , ) sinh ( , )mIf x xλ β = α λ β ×⎡ ⎤⎣ ⎦  
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was chosen, where a
n(λ, β), αn(λ, β), and xe(λ, β) are 

defined by Eq. (22), i.e., 

 an(λ, β) = an0 + an1{tanh[anβ(β – βne)] + 

 + (tanh[a
nβ(β – βne)])

2}, n = 0, 1, 

 αn(λ, β) = αn0 + αnλ ββ 

λβ2, n = 0, 1, 2, 

 xe(λ, β) = xe0 + xeλββ 

λβ2.  (26) 

The parameters, obtained through the fitting of 
Eqs. (25) and (26) to the values of resonance 
functions, computed by Eq. (23) in the model of real 
trajectories, are given in Tables 4 and 5. 

 

Table 4. Parameters of the model I(1,
 

0)f 

ð

ð functions 

Parameter I(1,
 

0)f 

7
7 I(1,

 

0)f 

9
9 I(1,

 

0)f 

12
12 I(1,

 

0)f 

13
13 I(1,

 

0)f 

15
15 

 β ≤ 1.0 

a10 0.8686 ± 0.0361 0.9589 ± 0.0762 1.4151 ± 0.0819 1.3273 ± 0.0663 1.4305 ± 0.0685

a11 3.0165 ± 0.1247 3.2679 ± 0.1605 5.0427 ± 0.287  4.6717 ± 0.2290 5.0632 ± 0.2379

β1e 1.051 ± 0.002  1.060 ± 0.002 1.069 ± 0.002  1.0633 ± 0.0026 1.064 ± 0.0025

a1β 8.937 ± 0.178  7.664 ± 0.169 6.952 ± 0.1370 7.257 ± 0.1490 7.208 ± 0.1441

a20 0.0219 ± 0.0015 0.01721 ± 0.0020 0.03032 ± 0.0027 0.0177 ± 0.0026 0.01769 ± 0.0027

α0 0.6046 ± 0.0194 0.6261 ± 0.0216 0.3936 ± 0.0163 0.5122 ± 0.0158 0.48417 ± 0.0139

α0λββ –0.0509 ± 0.0022 –0.06527 ± 0.0026 –0.04106 ± 0.0021 –0.0723 ± 0.0022 –0.0723 ± 0.0020

xe 0.1392 ± 0.0403 –0.1558 ± 0.0605 –0.8004 ± 0.1009 –0.9093 ± 0.0906 –1.16800 ± 0.0967

xeλββ 0.5053 ± 0.0775 0.6212 ± 0.0246 0.9696 ± 0.0375 0.9828 ± 0.0330 1.1138 ± 0.0345

α10 0.7930 ± 0.0674 0.7615 ± 0.0194 0.5297 ± 0.0129 0.6046 ± 0.0138 0.5640 ± 0.0121

α2 = α0      

 β > 1 

a10 0.3432 ± 0.0066 0.2975 ± 0.0068 0.2949 ± 0.0065 0.2855 ± 0.0082 0.2622 ± 0.0064

α0 0.6021 ± 0.0162 0.4766 ± 0.0148 0.4007 ± 0.0119 0.3801 ± 0.0146 0.3114 ± 0.010 

α0λββ 0.02428 ± 0.0015 0.02284 ± 0.0017 0.01904 ± 0.0015 0.0229 ± 0.0199 0.01787 ± 0.0016

xeλββ  –0.6721 ± 0.0212 –1.0418 ± 0.0369 –1.2133 ± 0.0420 –1.5143 ± 0.0645 –1.8000 ± 0.0662

α10 0.7241 ± 0.0138 0.5735 ± 0.0125 0.4808 ± 0.0099 0.4601 ± 0.0121 0.3767 ± 0.0083

 

Table 5. Parameters of the model I(2,
 

0)f 

ð

ð functions 

Parameter I(2, 0)f 

6
6 I(2, 0)f 

8
8 I(2, 0)f 

10
10 I(2, 0)f 

12
12 I(2, 0)f 

14
14 I(2, 0)f 

16
16 

 β ≤ 1.0 
a10 0.680 ± 0.031 0.6961 ± 0.0295 0.6835 ± 0.0292 0.720 ± 0.027 0.7227 ± 0.0272 0.7675 ± 0.0295
a11  1.9647 ± 0.0186 2.2212 ± 0.0948 0.2251 ± 0.0962 2.4028 ± 0.0206 2.4420 ± 0.0910 2.6497 ± 0.1004
β1e 1.074 ± 0.001 1.062 ± 0.028 1.063 ± 0.0030 1.078 ± 0.0013 1.061 ± 0.002 1.064 ± 0.0025
 a1β 7.50 ± 0.162 7.353 ± 0.166 7.248 ± 0.171 7.200 ± 0.144 7.185 ± 0.144 7.041 ± 0.139
a20 0.0326 ± 0.0011 0.0220 ± 0.0016 0.01788 ± 0.0018 0.02492 ± 0.0017 0.01294 ± 0.0019 0.0115 ± 0.0021
α0 0.4378 ± 0.0022 0.4497 ± 0.0171 0.4776 ± 0.0177 0.4317 ± 0.0032 0.4748 ± 0.0144 0.4624 ± 0.0137
α0λββ –0.0216 ± 0.0017 –0.0262 ± 0.0022 –0.0345 ± 0.0022 –0.0314 ± 0.0021 –0.0432 ± 0.0020 –

0.0450 ± 0.0019
xe  1.328 ± 0.016 1.1936 ± 0.0261 0.9001 ± 0.0354 0.6680 ± 0.0273 0.4813 ± 0.0478 0.2578 ± 0.0578
xeλββ  0.4401 ± 0.0146 0.4324 ± 0.0180 0.5512 ± 0.0232 0.7751 ± 0.0235 0.7704 ± 0.0275 0.8752 ± 0.0310
α10  0.7016 ± 0.0028 0.6541 ± 0.0132 0.6336 ± 0.0145 0.5721 ± 0.0023 0.5767 ± 0.0125 0.5482 ± 0.0121
α2 = α0       

 β > 1 
a10 0.3834 ± 0.0068 0.3515 ± 0.0071 0.3212 ± 0.0070 0.2321 ± 0.0029 0.2880 ± 0.00670.2759 ± 0.00667
α0 0.5149 ± 0.0123 0.4749 ± 0.1313 0.3998 ± 0.0117 0.3391 ± 0.0068 0.3067 ± 0.0096 0.2771 ± 0.0090
α0λββ 0.02481 ± 0.0011 0.0207 ± 0.0014 0.0193 ± 0.0015 0.0252 ± 0.0009 0.0176 ± 0.0015 0.01698 ± 0.0015
xeλββ  –0.5985 ± 0.0184 –0.9191 ± 0.0298 –1.1973 ± 0.0406 –1.50 ± 0.26 –1.7504 ± 0.0623 –2.007 ± 0.0731

α10 0.6307 ± 0.0102 0.5707 ± 0.0110 0.4817 ± 0.0097 0.3947 ± 0.0065 0.3714 ± 0.0078 0.3355 ± 0.0073
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Note that, if necessary, an asymptotic 

representation for the resonance functions If(x) should 
be used for large x, which can have an analytical 
form when using Eq. (21) for real parts of these 
functions. Really, according to Ref. 13, 

 
0

1 2
( ) d ( )If x x f x

x

∞

′ ′≅
π ∫  (27) 

at large x. Substituting closed-form Eq. (21), obtain 
the asymptotic representation  

 ( ) 212
( ) – ln 1 e .

( )
em x

a
If x

x
α⎧ ⎫⎡ ⎤≅ +⎨ ⎬⎣ ⎦π α⎩ ⎭

 (28) 

For x > 9, Equation (28) gives almost the same 
value for If (m)(x) as integral (24). The resonance 
functions I(1,

 

0)f 

7
7(x) and I(2,

 

0)f 

6
6(x) (2) are shown in 

Fig. 2. 
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6
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Fig. 2. Resonance functions I(1,

 

0)f 

7
7(x) (1) and I(2, 0)f 

6
6(x) (2), 

obtained in the ET approximation for two sets of 
intermolecular potential parameters (λ = 2.0; β = 0.75) (a) 
and (λ = 2.0; β = 1.0) (b). 

 

6. Calculation  
of broadening coefficients 

 

Obtained model representations (21) and (25) 
for resonance functions were tested in calculations of 
Ar-pressure broadening coefficients of rotational lines 

of HCl and OH molecules. In such calculations, the 
first-order transaction functions S1(b), determined by 
the difference between intermolecular potential in 
different vibrational states, can be neglected. All the 
calculations were carried following the Robert–
Bonamy scheme,5 with integration over rc when 
determining γ and δ. The integration over β = σ/rc, 
β0 ≤ β ≤ ∞ (β0 = σ/rc0, rc0 is given in Ref. 5) is more 
convenient. In addition, the mean thermal velocity v 
is used in calculations. 

The system HCl–Ar is thoroughly studied both 
experimentally and theoretically.3,5,14 The scattering 
cross section for the line half-width (differing from 
the half-width γ in the multiplier2) of the rotational 
molecule spectrum was calculated5 with the use of 
the PT model and model potential (19) with 
parameters  

 ε/kB = 202 K, σ = 3.37 Å; 

 R1 = 0.37; R2 = 0.65; A1 = 0.33; A2 = 0.14. 

All functions, required for the transaction 
function S(b), are given in Ref. 5, including the 
resonance functions (1,

 

0)f 

7
7, 

(1,
 

0)f 

12
7 , (1,

 

0)f 

12
12 and (2,

 

0)f 

6
6, 

(2,
 

0)f 

12
6  and 

(2,
 

0)f 

12
12. We used the same functions for 

S(b) except for the above-obtained functions (21) 
and (25) instead of resonance ones in the PT model  
( (1,

 

0)f 

12
7  and (2,

 

0)f 

12
6  were determined from Eq. (20)). 

  The computational results are given in Table 6 
in comparison with the results of similar computations, 
carried out by other authors.5 A good agreement of 
our calculations with those from Refs. 3 and 14 is 
evident: there is a small undervaluation of the 
calculated cross sections for the rotational quantum 
number J = 5 as compared to the NG method at an 
energy of 398 K. In comparison with the parabolic 
trajectories, our results are regularly lower. 

 
Table 6. Scattering cross section (Å2)  

for the HCl rotational transitions in the system HCl–Ar 
for different reduced energy E* = mv

2/kB 

E* = 398 K E* = 808 K 
J 

MET NG3,5 PT5 MET SGC3,14 PT5

0 80.0 79.9 80.3 66.1   
1 62.8 57.4 68.2 54.0 57.2 58.7
2 45.4 45.2 55.1 41.7 43.1 47.4
3 34.3 37.4 45.1 35.2 36.5 40.2
4 26.1 30.6 36.6 31.4 31.2 34.8
5 20.1 23.7 29.4 27.7 26.9 30.2

 
The coefficients γ for the rotational band, 

computed with model potential (19), are shown in 
Fig. 3. 

The experimental15 γ for the absorption band 
1 ← 0 are shown here for comparison. In Ref. 15, γ 
and δ were computed by the NG-method for the 
bands 1 ← 0 and 2 ← 0 with the use of interaction 
potential, extended in comparison with Eqs. (4) and 
(19), being in good agreement with experimental 
results. 
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Fig. 3. Coefficient γ for the HCl rotational band in the 
system HCl–Ar computed with model potential (19). 
Experimental and NG method computed values of γ 
correspond to the 1 ← 0 band. 

 
The vibrational dependence of the parameters 

was not taken into account in model potential (19), 
therefore, line shifts are undetectable. The contribution 
of the second-order transaction functions was assessed 
and turned out to be quite significant for small J 
(Fig. 4). 
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Fig. 4. Contribution of second-order transaction functions 
into the shift of HCl molecule rotational lines in the system 
HCl–Ar (with the use of model potential (19)). 

 
The broadening coefficients γ for the system 

OH–Ar were theoretically computed earlier by the 
Robert–Bonamy14 and ET17 methods. The parameters 
of atom–atom intermolecular interaction potential 
from Eq. (4) and other parameters of the molecule 
are given in Ref. 16 and 17. The OH radical has two 
branches 2Ï1/2 and 

2Ï3/ 2 due to the presence of the 
unpaired electron. 

In this work, γ were computed for the both 
branches with accounting for virtual intrabranch 
transitions; interbranch transitions were not taken 
into account, that, according to Ref. 16, undervalues 
the computed γ by about 8%. The computational 
results are given in Table 7. 

Table 7. Experimental and computed ÎÍ line  
half-widths (10–3 cm–1/atm) for rotational transitions  

in the OH–Ar system 

2Ï3 / 2 
2Ï1/ 2 

J 
Exp.18 MET ET17 MET ET17 

1/2 – – – 44.6 50.3 
3/2 49.9 48.8 46.9 36.4 44.2 
5/2 – 40.8 39.8 32.9 37.8 

7/2 – 35.4 28.3 29.8 27.2 

 

The obtained γ well correlate with computations 
in the ET model, however, our computation results 
are a little overvalued at J = 3.5 for the branch 

2Ï3/2. At the same time, note a good agreement 
between the computation for J = 1.5 and the only 
experimental value. 

 

7. Resonance function simulation  
for large values of index p 

 

Expansion of the atom–atom potential is poor 
convergent for a number of systems of interacting 
molecules, which results in the necessity to take into 
account items, including the resonance functions f 

ð

ð 
with large p. The behavior of such resonance functions 
can be determined from the behavior of already 
computed ones. The behavior of the model resonance 
functions (2,

 

0)f 

ð

ð(x) with p = 6, 8, 10, 12, 14, and 16 
is exemplified in Figs. 5 and 6 for λ = 2.0 and 
different β. 
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Fig. 5. Model resonance functions (2,

 

0)f 

ð

ð(x) for λ = 2.0 and 
β = 0.9. 

 

The p-dependence of the functions 

 f 

(m)(x, λ, β; p) = a1′(λ, β; p) (tanh[z′(λ, β; p)] – 1); 

 z′(λ, β; p) = α′(λ, β; p) [x – xå
′(λ, β; p)] (29) 
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Table 8. Parameters of model resonance functions (29) 

β ≤ 1 (yαx = 0,0) 
Parameters 

a10′   a11′   a1β′  βå′ ya 

10f 

ð

ð –0.2858 ± 0.0154 0.1369 ± 0.0075 7.379 ± 0.162 0.8 0.2927 ± 0.0206 
20f 

ð

ð –0.5278 ± 0.0305 0.2440 ± 0.0144 6.845 ± 0.148 0.8 0.7804 ± 0.0514 

 α0′ αλββ′  yα xå′ xeλββ′  

10f 

ð

ð 0.8604 ± 0.1393 0.6811 ± 0.1159 0.1878 ± 0.04468 1.7443 ± 0.0340 0.4634 ± 0.01787 
20f 

ð

ð 0.4975 ± 0.0261 0.3451 ± 0.0238 0.0566 ± 0.0078 2.8806 ± 0.0236 0.42051 ± 0.0144 

 β > 1 

 a10′  ya α0′ αλββ′  yα 

10f 

ð

ð –0.6482 ± 0.0093 0.0013 ± 0.0001 0.2105 ± 0.0036  –0.0286 ± 0.0007  0.0012 ± 0.0001 
20f 

ð

ð –0.7169 ± 0.0078 0.0011 ± 0.0001 0.1928 ± 0.0026 –0.02522 ± 0.0005 0.00075 ± 0.0001 

 xå′ xeλββ′  yαx   

10f 

ð

ð 0.0 –6.2577 ± 0.4254 1.7512 ± 0.1162   
20f 

ð

ð 0.0 –4.2901 ± 0.2455 1.2264 ± 0.0694   
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Fig. 6. Model resonance functions (2,

 

0)f 

ð

ð(x) for λ = 2.0 and 
β = 1.03. 
 

 

can be defined by the p-dependence of parameters of 
these functions. In this work, this dependence for 
β ≤ 1 is chosen in the form 

 

1 1( ) /(1. ),

( ) /(1. );

( )

a

e e

a p a p y p

p y p

x p x

α

′ ′= +

′ ′α = α +

′ ′=

 (30) 

and for β > 1 

 

1 1( ) /(1. ),

( ) /(1. );

( ) /(1. ).

a

e e x

a p a y p

p y p

x p x p y p

α

′ ′= +

′ ′α = α +

′ ′= +

 (31) 

The parameters of model functions (29) were 
determined from the fitting of Eqs. (29)–(31) to 

different p and the values of functions 1 2( , ) ( , , )pl l
pf x λ β  

for different x, λ, and β simultaneously (see Table 8). 
 

Conclusion 
 
The principal results of this work are given in 

Tables 1–5, which, along with Eqs. (21) and (25), 
allow one to define MET resonance functions for  
the atom–atom potential from Eq. (4) or model 
potential (19) for the interaction of molecules  
with neutral gas atoms, i.e., to specify model 
representation for the resonance functions, 
numerically obtained in approximation of the exact 
trajectories (ET). This resonance functions are in  
the closed form, that significantly simplifies 
computations of spectral line broadening coefficients 
in the ET approximation. The accuracy of these 
functions depends on the accuracy of 
approximations (21) and (25). Test computations, 
carried out in this work and Refs. 1, 7, and 8, show 
that these functions give the computation results 
comparable with those obtained in ÅÒ or NG 
approximations. 
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