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Dynamic light scattering at induced oscillations of particles of
polydisperse liquid-droplet aerosol as applied to determination
of aerosol particle size spectrum
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The frequency dependence of the intensity of the dynamic component of light scattered at induced
(ponderomotive) oscillations of particles of a polydisperse liquid-droplet aerosol is calculated
numerically. Based on a solution of the inverse problem by the method of histograms, it is shown that
the particle size distribution function can be reconstructed with sufficient accuracy.

Introduction

Oscillating liquid particles change their shape,
and this leads to appearance of the dynamic component
in the radiation scattered by the aerosol. These
oscillations can be caused by the particle motion in the
atmosphere or stimulated by radiation. The natural
oscillation frequencies of droplets are unambiguously
determined both by their size and physical—chemical
properties of the liquid. Therefore, the numerical
information on the aerosol size distribution function can
be derived from the frequency behavior of the dynamic
component of the scattering.

The possibility of practical use of the
electromagnetic (UHF) radiation modulated at
oscillating droplets for determining the size of rain
droplets was discussed in Ref. 1. In that paper devoted
to experimental study of fluctuations of a radar echo
from clouds, Brook and Latham noted the necessity of
taking into account the random phase in the
electromagnetic radiation scattering by arbitrarily
oriented particles. In Ref. 2, the same authors
conducted laboratory measurements of the variable
component of intensity of the UHF radiation scattered
at oscillations of individual droplets (diameter 00.3—
0.5 cm) blown by the air flow. Light scattering by rain
droplets (diameter [00.1-0.3 ¢cm) illuminated from
below by a searchlight was studied in Ref. 3. Light
scattered by droplets was recorded by a photo camera
as a series of bright bursts (tracks). The diameter of a
droplet was derived from the burst repetition period,
and then the size distribution was constructed for all
droplets falling in the camera’s field of view.

Under exposure of a droplet to high-power laser
radiation, its surface is deformed due to ponderomotive
forces. The theoretical principles of this effect are
considered in Ref. 4. Exposing a particle to modulated
laser radiation and changing its modulation frequency,
it is possible to initiate oscillations of various groups of
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particles of a certain size.® The frequency dependence of
the intensity of light scattered at induced oscillations of
aerosol particles was obtained experimentally in Ref. 6,
but, unfortunately, the reconstruction of the aerosol
size distribution function has not been performed there.

Resonant build-up of droplet oscillations leads to
increasing the amplitude of the dynamic component of the
scattered radiation. Besides, the use of the modulated
pumping radiation results in co-phase oscillations of
droplets. This, in its turn, leads to better detection of
the dynamic component of the scattered radiation as
compared to spontaneous oscillations of droplets. In
Refs. 7 and 8, the resonant build-up and dynamic
scattering of light at ponderomotive oscillations of
surfaces of individual droplets having arbitrary sizes
were studied theoretically.

In this paper, the scattering by a group of
oscillating particles is numerically simulated, and the
possibility to derive the particle size distribution
function from the dynamic component of the scattered
radiation is considered.

Fundamental equations for calculating
ponderomotive oscillations of
transparent droplets and dynamic
component of intensity of scattered
radiation

The general statement of the problem on
deformation of a liquid transparent droplet in a light
field is given in Refs. 6—9. It includes the equations of
dynamics of incompressible liquid formulated with
allowance made for the action of ponderomotive forces.
The equation describing the spatial-temporal evolution
of deformations of the droplet surface is the equation of
induced oscillations of a low-viscosity liquid for the

coefficients of expansion of a particle surface
displacement in terms of spherical harmonics:
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The radius of a deformed particle is described by the
equation

a(t, ©) = ay + &(t, 0) = ay + Re gz &) Ylo(e)g,
=

where §; are the expansion coefficients of a surface
displacement; @y is the radius of the unperturbed
particle; Yy (8) are spherical harmonics; 0 is the polar
angle; t; = aé/[2(2l + 1) (I = 1) v] is the characteristic
time of oscillation damping due to the effect of viscous
forces; v =n/p, is the kinematical viscosity of the
liquid;

Q=NIU+2) U-1) a/(p,a)) (2)

are the natural frequencies of droplet oscillations; o,
Py, and n are the surface tension coefficient, density,
and dynamic viscosity of the liquid, respectively.

The right-hand side of Eq. (1) describes the
“inducing” force

1

fi(t) = J. f(t, 8 Y[o(8) sind db,
0

where f(t,8) = (g, — 1) /(8M[(g, — D(E(t, ) n)2 +
+E2(t, 8)] is the change of the normal component of
tension of the electric field on the droplet surface!0;
€, is the permittivity of the droplet matter; E(8) is the
strength of the electric field on the droplet surface; n is
the vector of the external normal to the particle surface.

The coefficients f; depend on the electric field
distribution on the droplet surface. As is well-known,
for large particles this distribution has a sharply
inhomogeneous structure, and therefore f; can be
determined only numerically.

Oscillating particles are scatterers with the
dynamically varying shape of the surface. Obviously,
the intensity of light scattered by such particles also
experiences oscillations in time. As was shown in
Ref. 8, for small perturbations of the droplet surface
[&] <<ay, the intensity of the scattered radiation can be
presented as a sum, in which the first term determines
the elastic scattering by  unperturbed droplet, and
other terms are responsible for the contribution to light
scattering at Raman frequencies:

N
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x exp {— ikr' cosy;} Re %z &,(1) Y;p(0) do’% , (3)
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where

T(t) = J E(r',t) exp {ikr' cosy;} dr';
V“O

k is the wave number; y; is the angle between the
vectors r and r'.

As the modulation frequency Q of the acting
radiation changes, every burst of the scattered radiation
corresponds to resonant build-up of mechanical
oscillations of particles of a certain size. The square
dependence of I on ay shows that as the particle size
increases, the contribution of this particle to the
intensity of the scattered radiation increases too.

Angular dependence of intensity of the scattered
radiation was calculated numerically by Eq. (3). It has
shown that the relative change of the intensity with
respect to unperturbed (elastic) scattering at the
frequencies of mechanical oscillations of a droplet is
maximum in the direction normal to the action
(6 =90°) and in the direction of the primary-rainbow
angle (8 = 137°). This determines the angles of optimal
reception of the dynamic component of the scattered
radiation.

Reconstruction of the aerosol particle
size distribution function

Let us estimate the possibility of reconstructing
the aerosol particle size distribution function using the
following assumptions. We believe that all particles in
the sensed aerosol volume V are under the same power
conditions. This implies that the intensity of radiation
incident on particles is the same and the angle to the
receiver is roughly the same too. Then, obviously, the
intensity I of the radiation scattered by the aerosol in
the single-scattering approximation is

00

Q) =Ny V J 1(ay,Q) f(ay) day, (4)

0
where N is the concentration of droplets; f(ag) is the
normalized particle size distribution function; Q is the
modulation frequency of the acting radiation; I is the
intensity of scattering by a single particle.

It is readily seen that Eq. (4) is the Fredholm
equation of the first kind. It can be solved using some
standard method, for example, the method of
histograms.!! In this method, the area under curve is
replaced by rectangles, and the integral is transformed
into a sum:

n y
[(Q) = N()V Z Ni,i+1 I;’l+1 Ado,
=1
where N; ;i1 is the relative concentration of particles
with the sizes falling in the range i, i + 1, whose width
is equal to Aay; Ié’lﬂ is the intensity of radiation
scattered by a single particle from this range (the
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particle size is usually assumed to correspond to the
range center). Let us consider the situation in which
particles of only certain sizes corresponding to the
centers of intervals are in the selected volume. The
total intensity of the radiation emitted by this volume
is a sum of intensities scattered by individual particles:

n
I=NoV Y N; I (5)
i=1
, N, are the relative concentrations of
particles of a certain radius; Il, .., It are the
intensities of the radiation scattered by every droplet of
the given size.

The intensity of the pumping radiation is modulated
at several frequencies chosen resonant to every chosen
particle size. For each modulation frequency Q;, we can
write analytical equations similar to Eq. (5).
Consequently, for several frequencies we have a set of
algebraic equations:

where Ny, ...

n
1(Q) =Ny V Y N; I(Q)), (6)
=1
where Qq, ..., Q, are the natural resonance frequencies of
mechanical oscillations of droplets with radii ay, ..., a,.
Figure 1 shows frequency dependence of the
amplitude of steady oscillations for particles of different
sizes. Just such a behavior causes the dependence I2(Q).
The monotonic dependence of the resonant curve
maximum on the particle radius is clearly seen in the
figure. The dependence of the maximum surface
displacement for droplets of different sizes and some
their oscillation modes (fundamental mode /=2 and
higher harmonics [ = 3, 4) is shown in Fig. 2.
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Fig. 1. Relative amplitude of steady
modulation frequency of acting radiation for droplets of
different sizes: ag=11.4 (1), 9.5 (2), 8.2 (3), 6.2 (4),
4.7 (5), 3.7 (6), 2.4 (7), and 1.6 pum (8).

The numerical analysis shows that these curves are

well approximated by the power dependence Dag/z.
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Some scatter of points is caused, first of all, by
inhomogeneous distribution of the surface intensity of
the electromagnetic field for optically large particles.
Besides, the resonances in the internal optical field!2
can significantly increase the surface intensity of the
electromagnetic field and, consequently, the amplitude
of deformations.
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Fig. 2. Maximum relative amplitude of droplet oscillations vs.
droplet size for different natural frequencies: Q, (1), Q3 (2),
and Q4 (3).

As an example, Fig. 3 shows the dependence of
the radiation scattered by a group of particles on the
modulation frequency of the pumping radiation. In this
case, the standard gamma distribution is taken as a model
particle size distribution function.

1 I1(Q), rel. units

1 n i
0 0.1 Q, MHz
Fig. 3. Frequency dependence of the intensity of the radiation
scattered by a group of particles for the initial gamma
distributions with the following parameters: 7, =3 pum and
u=20 (1), rp=3pm and p=10 (2), r, =3 um and
=5 (3), rp,=5um and p =20 (4). The frequency position
of the intensity maxima and the corresponding particle sizes
are shown.

At constant modal radius 7, and increasing
halfwidth of the distribution M, not only the halfwidth
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of the frequency behavior of the scattered radiation
intensity changes, but also the maximum itself shifts
towards lower frequencies due to the increasing
contribution of high frequencies to the scattering.
Therefore, in actual experiments, the maximum in the
frequency dependence of the scattered radiation falls on
the frequency lower than that corresponding to the
modal radius of the initial distribution. An exception is
a monodisperse or nearly monodisperse distribution, for
which these frequencies coincide. As a result, the
maxima of the frequency behavior for two distributions
with different halfwidths and modal radii can be
observed at the same value of the modulation frequency
(see Fig. 3, curves 3 and 4). However, the halfwidths
of these dependences are different. This points to the
potential possibility of reconstructing the actual
distribution by solving the inverse problem.

Thus, the frequency behavior of the amplitude of
the low-frequency component of the radiation scattered
by polydisperse aerosol carries information on the
properties of the particle size distribution. However,
obtaining the information on the particle size
distribution  function by direct recalculation of
parameters from the frequency characteristic without
solving the inverse problem is incorrect.

The principal diagonal of the matrix I3(Q;) in
Eq. (6) consists of the terms whose values are
determined by the maxima in the frequency dependence
of the oscillation amplitudes (see Fig. 1). However,
because of the dependences shown in Fig. 2, this system

is ill-posed, i.e., the determinant of the matrix I;(Q]') is
close to zero. To improve reconstruction, we should
smooth the values in the principal diagonal. This can be
done by the following procedure:

I(Q) =Ny V T
0

[s(aOv Q) .
—— a} f(ag) day, D
ag

where s is the exponent chosen in the corresponding
way.

The set of equations (6) with allowance made for
Eq. (7) has been solved numerically with the use of
standard IMSL libraries for FORTRAN 90 language
(LSARG procedure) at s = 1. Besides this technique,
the iterative algorithm proposed in Ref. 13 was used for
solving the set (6). This simple algorithm is easily
realizable with a computer. The distribution function at
each iteration is converted in accordance with the
equation

NPT = NP 1) /17(Q)),

where 1(Q;) is the initial frequency dependence of the
scattered radiation intensity; I”(Q;) is the frequency
dependence obtained with the use of the distribution
function N’; at the pth iteration. The distribution

functions reconstructed by the both methods gave close
results, which are presented in Fig. 4. For the
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distributions shown in the figure, the frequency
dependence maxima coincide, but the reconstruction
allowed us to satisfactorily calculate the initial
distribution functions.

100 ag, pm

Fig. 4. Reconstructed distributions (curve) and model
distribution (circles and squares); upper panel: 7, = 3 um and
u=5 (1), rp=5pm and p=20 (2); lower panel:
rm = 40 pm and p =10 (1), r,, = 50 pm and p = 20 (2).

An important problem is to estimate the stability
of the solution, i.e., to analyze the influence of errors
in the scattered radiation intensity on reconstruction of
the distribution function. For random noise simulation,
we used a random number generator of the IMSL
procedures. Figure 5 shows the frequency behavior of
the scattered radiation intensity. The vertical bars at
three points show the root-mean-square (rms) scatter of
the values averaged over ten samples. This scatter does
not exceed 10% of the value of intensity at the given
point. Figure 6 shows the model distribution,
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reconstructed distribution for the problem free of noise,
and averaged reconstructed distribution with noise in
the frequency behavior, as well as the rms scatter at
some points. In the region of larger sizes, the errors of
reconstruction correspond to the errors in the frequency
dependence. Although in the region of small sizes the
errors of reconstruction are larger, averaging of the
obtained distribution gives the result being sufficiently
close to the initial distribution.
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Fig. 5. Frequency characteristics of the intensity of scattered
radiation in the model distribution (Fig. 6). The solid curve
describes the initial dependence and the intensity value
averaged over 10 samples under noise conditions; at three
points the scatter of data is shown.

dp, Hm

Fig. 6. dashed line

Reconstructed  distributions; the
corresponds to the unperturbed problem, model distribution
(open circles); the solid curve corresponds to the value
averaged over 10 samples in the case of the noised frequency
dependence (see Fig. 5); the scatter of the data is shown at
some points.
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The decrease of the modal radius in the model
distributions leads to increase of the error of
reconstruction. Thus, for the particle size ¢y <1 pm the
information on the initial distribution is lost almost
completely because of blurring of the resonance
dependence for such particles (see Fig. 1).

Conclusion

Solution of the inverse problem has allowed us to
reconstruct the particle size distribution function with
good accuracy. The analysis of solution stability has
shown that for particles > 1 pm the reconstructed
distribution function is stable to small errors in the
frequency behavior of the scattered radiation intensity.

Thus, this research has demonstrated a possibility
of practical application of the effect of dynamic light
scattering at ponderomotive oscillations of droplet
surface to reconstruction of the particle size distribution
function of the liquid-droplet aerosol.
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