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A universal Monte Carlo algorithm has been developed and studied numerically for 
solving problems associated with the optical tomography of the translucent atmosphere. 
The algorithm has wide possibilities and makes it possible to solve complicated tomo-
graphic problems which are inaccessible to the other methods described in literature. In 
particular, this method allows one to take account of the spatial structure of the ex-
tinction coefficient field, the object need not be convex, requirements for the smoothness 
of the emission and absorption coefficients are unimportant, the total number of the 
needed projection data is not great, whereas the noise level may be significant, etc. The 
results of the calculations are illustrated by specific examples. 

 
 

In Ref. 1 we described the application of the 
Monte Carlo method to problems of emission tomo-
graphy of optically transparent media (the atmosphere 
in particular). In the case the medium is optically 
dense, i.e. its absorption coefficient at some chosen 
frequency, (r), is significantly different from zero, 
the retrieval of even a two-dimensional field of its 
emission coefficient (r) from the projective emission 
data f(p) becomes a considerably more difficult task. 
Usually this retrieval problem does not admit of an 
analytical solution. The role of the Monte Carlo 
method becomes even more important in such cir-
cumstances. In particular, heavy computational dif-
ficulties are faced when one has to account for the 
effects of scattering, or for the partial screening of the 
sensing radiation, when treating non-convex domains 
of definition of the functions (r) and (r), and in the 
case when the structure of both the functions  and  
must be estimated from data on the emission alone, etc. 

Neglecting both refraction by the medium and 
wave effects, we choose as the basis on which to 
construct our algorithm the Radon exponential 
transformation,2 

 

(1) 
 

Here p is the sighting parameter, p = pn, n is a unit 
vector normal to the sighting line, and  is the Dirac 
delta-function. The integration in the exponential is 
taken from the emitter position r to that of the detector 
rD. Below we assume the function (r) to be pre-
scribed, but do not make use of the traditional re-
striction of a weak spatial dependence of the extinc-
tion coefficient ((r) > const).2 

Let  be an arbitrary region, not necessarily 
convex, covered by a uniform rectangular grid of NN 
nodes. We search for its two-dimensional emission 
coefficient in the form of a histogram 
 

 (2) 
 
where the integral is taken over a single grid cell ij. 
The estimated solution is constructed following a 
procedure similar to the one employed in Ref. 1. A 
certain specified "pixel" size h is prescribed, and the 
value of ij is approximated by an integer number of 
such "pixels" mij 
 

 (3) 
 
The value of h was determined in Ref. 1. 

We introduce a Cartesian coordinate system 
(OXY) within the region , so that its abscissa axis 
(OX) coincides with the central beam-sum of the first 
projection. For the sake of definiteness we associate a 
coordinate axis with the projection: it coincides with the 
OY axis at the initial moment (the first projection). 

Now let us consider the retrieval algorithm in 
detail. 

1. We randomly choose the number of a grid-cell 
within the retrieval area. If sufficiently reliable a 
priori data on the distribution of the emission coef-
ficient (x, y) in  are available, then the cell may be 
chosen on the basis of such data. In general such a 
choice is made uniformly over . 

2. We place an emitting "pixel" h into the 
chosen cell (i, j) and estimate its contribution to all  
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the projections. Our pixel h contributes to every 
projection, and that contribution is computed ac-
cording to the integral criterion 
 

 (4) 
 

assuming that the projection step coincides with the 
discretization step h over the region . To improve the 
statistical properties of the representation, N0 
“quanta" are emitted from the center of the cell (i, j) 
in the direction of the considered beam-sum. 

To account for the spatial dependence of the ex-
tinction coefficient, we employ the Neumann tech-
nique.3 The mean free path is computed according to 
the formula 
 

 (5) 
 
where  is a pseudorandom value uniformly distributed 
over the interval (0, 1). Having progressed to a point 
a distance  from the chosen grid cell (i, j) along the 
sighting line, and having convinced ourselves that the 
condition (x, ó)   is satisfied for the new point as 
well, we play out a random absorption act. If 
(x, y)   for the new point, we assume the 
"quantum" not to be absorbed and to be received by 
the detector. For a point satisfying the condition  
(x, y)   we assume that the "quantum" which has 
reached it, proceeds to move through the object if 
 

 (6) 
 
Here  is a pseudorandom value uniformly distrib-
uted over the interval (0, 1). In the latter case we 
again move along the sighting line the distance , 
etc. Finally, the "quantum" is either absorbed, so 
that it does not participate in the formation of the 
projection, or it is registered by the detector. The 
number of "quanta" received by the detector of the 
pkth projection, described by its angle 1, is added to 
the preceding value W(0) 
 

 (7) 
 
it is also assumed that at the initial moment W(0) = 0 
and N1 is the number of "quanta" hitting the cell  
(pk, 1), 1, ,k N  1, .l L  

3. The values W(1)(pk, 1) and f(pk, 1) are 
compared. If W(1)(pk, 1)  f(pk, 1)  for every pos-
sible k and l, then the step is accepted, the value of ij 
is changed to ij + h, and the projection data set W(0) 
is replaced by W(1). In the opposite case the step is 
rejected. 

4. We return to position 1. The retrieval pro-
cedure is stopped only when the norm of the newly 
constructed set of projections W deviates from the 
initial set f by less than some error of the input data, 

prescribed a priori. In a sense the condition for ter-
minating the computations plays the role of a regu-
larizing procedure.4 

The step hf plays the role of a regularization pa-
rameter, and it is to be matched with the actual ac-
curacy of the initial data. We now specify the criterion 
for choosing the value of hf. The accuracy of the Monte 
Carlo method is proportional to M–1/2, where M is the 
number of trials.3 Therefore to match our results with 
projection data which have a noise level of % (recall 
that actually we are repeatedly solving the direct 
problem) we need M > 104/ trials. Determining the 
average value of / over the projection data 
 

 (8) 
 
we find that 
 

 (9) 
 
Obviously, the "lucky" steps will become rarer and 
rarer further into the computation as the simulation 
goes on, since with each succeeding step it becomes 
more and more difficult to introduce our "pixel" h 
into the randomly chosen cell (i, j) of the region  
in such a way as to satisfy all the projections in the 
process with the newly obtained emission function. 
If the cell has been chosen erroneously, i.e., if the 
addition of a new "pixel" into it cannot satisfy all the 
projections, then the cell should not be considered 
further on. This feature speeds up the computation 
quite significantly. In the course of time we thus 
exclude all the cells of the region  from consid-
eration, after which the computation is over. 

On the basis of the above-described scheme we 
have developed a computer software package, and a 
number of numerical simulations have been run im-
plementing the following closed cycle scheme4: 

a) the emission coefficient distribution is gener-
ated; 

b) the projections f(pk, 1) are found; 
c) a noise factor is introduced into the projection 

data (for such a noise we employed pseudorandom, 
uncorrelated, normally distributed values); 

d) the distribution of the emission coefficient 
(0)
ij  is retrieved as the corresponding histogram; 

e) the obtained solution is filtered; 
f) the solution is analyzed and graphically pre-

sented. 
The following two-dimensional functions were 

chosen as the model ones: 
— smooth 
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 (10) 
 
 

— piecewise-constant 
 

 
 (11) 
 

The extinction coefficient (x, y) was prescribed 
in the form 
 

 (12) 
 

As the region  we chose a circle of radius R1 = 1 
with its center at the origin. 

Another retrieval which we ran over a compli-
cated non-convex region is, apparently, the first one 
ever to have been conducted 
 

 (13) 
 

One of the advantages of the closed cycle simula-
tions is that comparisons become possible between the 

constructed and the initial image   (0)
ij  and   ,ij  

where ij = (xi + h/2, yj + h/2). Two criteria 
were employed for such comparative estimates:  
 

 (14) 
 
(S is sometimes called the rms difference measure), and 
 

 (15) 
 
(R is the normed absolute difference measure). Note 
that the measure S accounts mostly for the few major 
errors, and the measure R for the numerous minor 
ones. Figures 1–4 give some examples of the emission 
coefficient (x, y) retrievals. 

Figure 1 depicts the central cross section (x = 0) 
of the model distribution represented by the function  
 

 
 

 (16) 
 

(see curve 1). The retrieved distribution (curve 2) is 
characterized by S = 28% and R = 24%, Figure 2 
shows the isolines of the respective tomograms. The 
retrieval included 16 projections. 

Figure 3 gives the central cross section (x = 0) of 
the emission coefficient distribution of the initial 
model (curve 1) and the retrieval result (curve 2). The 
distribution (x, y) (from the class of the piece-
wise-constant functions in Eq. (11)) was prescribed 
over a non-convex domain in Eq. (13). The criterion 
formulas (14) and (15) give S = 36% and R = 28%. 
The number of projections used was L = 4. Figure 4 
presents the respective tomograms. The retrieval re-
sults presented in those figures correspond to heavily 
noise-loaded initial data (up to 30%). The project 
ion-to-retrieval error transmission coefficient was of 
the order of unity. 
 
 

 
 

FIG. 1. Curve 1 is a central cross section (0, y) 
of the exact solution (16); curve 2 is the same cross 
section retrieved by 16 projections.  

 

 
 

FIG. 2. Distribution isolines of the exact emission 
coefficient (16) (solid lines) and the retrieved 
values (dashed lines). Intensity levels: 1 — 0.1, 
2 — 0.3, 3 — 0.5, 4 — 0.7, 5 — 0.9. 
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FIG. 3. Curve 1 is the central cross section (0, y) 
of the exact solution (11); curve 2 is the same cross 
section retrieved by 4 projections on the 
non-convex region . 

 

 
 

FIG. 4. Isolines of the distribution of the exact 
emission coefficient (11) (solid lines) and re-
trieved (dashed lines). Intensity levels: 1 — 0.1; 
2 — 0.3; 3 — 0.5; 4 — 0.7; 5 — 0.9. 

 

Our numerical experiments allow us to make the 
following conclusions: 
 

1. The Monte Carlo retrievals of the emission 
coefficient may be run for various spatial distributions 
of the extinction coefficient. The retrieval accuracy is 
mainly determined by the optical depth of the medium 
R1. In our computations the optical depth, equal to 
8–10, was, already in some sense, critical: qualitative 
retrievals of the distribution (e.g., tracing out the 
contours of the emitting areas and determining the 
average emission level) are still possible beyond that 
threshold, but quantitative features of the distribution 
become impossible to identify. 

2. The Monte Carlo method of emission coeffi-
cient retrieval under conditions of noticeable absorp-
tion is quite stable with respect to the projection data 
errors. A significant part of the computations were 
conducted at the 20–30% noise level in the projec-
tions, however, the error transmission coefficient 
remained O(1). 

3. For the first time two-dimensional retrievals 
have been obtained from the sharply inhomogeneous 
absorption distributions over complicated domains, 
including non-convex ones. In other words, it makes it 
possible to pose and solve inverse optical problems for 
translucent media when the sensing radiation is par-
tially screened from the detector. 
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