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Based on analytical relations obtained for reconstructing the wave phase from 

the distribution of wave intensity, the peculiarities of the two-dimensional wave-

front structure formation have been investigated, which are connected with 

interference zeros of the field.  The presence of field zeros is shown to be 

insufficient for the existence of dislocations.  The transition from the parabolic 

wave equation to the nonlinear integro-differential equation for the field intensity 

has been made for the first time. 
 

The phase-front dislocations, occurring in the 
interference optical fields,1,2 became recently a matter 
for scientific research and indicator of a series of wave 
phenomena and processes in nonlinear optics and laser 
physics.3-5  In addition, line of scientific research is 
formed connected with the use of dislocations for 
remote diagnostics of natural media.6 However, it 
should be noted that practically in all the theoretical 
papers devoted to these problems it is assumed that the 
presence of wave field zeros is sufficient condition for 
dislocation formation.  When analyzing the dislocation 
statistics, one suggests that it is completely determined 

by zero-carrier statistics.7,8  To check the uniqueness of 
such correspondence, we consider the process of 
dislocation formation, solving simultaneously the 
problem of the wave-phase reconstruction from 
measurements of wave intensity distribution (a so-

called phase problem in optics).9,10  When solving this 
problem, we obtain a set of consequences being useful, 
in our opinion, in the wave propagation theory as a 
whole. 

We consider the case of a two-dimensional wave 
propagating in the half-space z > 0.  To describe the 
propagation process, we use the parabolic wave 
equation11 
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where ε′(x, z) = [ε(x, z) $ ε$]/ε$, k = 
2 π
λ

 ε$, and ε$ is 

the constant mean value of ε.  This equation describes 
the evolution of the slowly varying complex amplitude 
of a monochromatic beam U(x, z) exp($ iωt + ikz) 
propagating along the z axis in an inhomogeneous 
refractive medium with the dielectric constant ε(x, z).   
 

By substituting U(x, z) = I1/2(x, z) exp{is(x, z)}, 
where I(x, z) is the intensity, and s(x, z) is the wave 
phase, Eq. (1) is transformed into the set of radiative 
transfer equations 
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Equation (2) expresses the energy conservation law in 
differential form.  It can be easy solved for the 
expression in braces: 
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The quantity in the left-hand side of the equation 
represents the transverse component of the Umov$
Poynting vector11 Lx(x, z).  Because the beam energy is 
localized along the direction of preferred propagation 
(along the z axis), it is evident that Lx(x0, z) → 0 as 
x0 → ± ∞.  Then instead of Eq. (4) we can write 
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where sign x is the signum function.  By means of 
Eq. (5) and eikonal (3) we also can derive the 
longitudinal component of the Poynting vector in terms 
of the intensity 
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For the parabolic equation, we know the consequence 
of the energy conservation law 
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From Eq. (5), we obtain one more consequence 
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Equations (5) and (6) make it possible to reconstruct 
the wave phase.  In fact, if the field intensity does not 
vanish in space {x, z}, we can write 
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Solutions of these equations are of the form 
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(10) 
and enable one to calculate the value of phase over all 
space z > 0, if the phase constant s(x0, 0) in the plane 
z = 0 is known.  Such definiteness is achieved at the 
sacrifice of the intensity measurement over all space 
from an initial plane to an observation point.  Let us 
assume that at some points of space x = xd, z = zd the 
intensity of wave field vanishes.  To describe such a 
situation, we turn to Eqs. (5) and (6).  Since for many 
optical problems the relative phase distribution is 
necessary, we consider only Eq. (5) with z as a 
parameter.  It can be shown that in the vicinity of 
points where I(xdi, zd) = 0 differential equation (5) 
admits the representation 
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and at the points x = xdi becomes identical.  At these 
points, the phase can take arbitrary values, and integral 
lines passing through them represent the straight lines 
parallel to the ordinate.  In the regions from one such 
point to the other, solution (5) coincides with classical 
solution (9).  Since the initial phase value s(x0, z) can 
be determined only to within the constant 2πn 
(n = ±1, ±2, ..., ±N), the particular solution in the 
regions between the points of singularity xdi may be 
any curve obtained from Eq. (9) by 2πn shift.  Integral 
curves along the entire x axis may consist of branches 
of solution (9) and vertical line segments of length 2πni 
(i is the serial number of point) extended to the 
transition to the next branch.  Such a solution with 
localized discontinuities at points xdi and continuous 
segments extending from xdi to xdi+1 will be a 
generalized solution12 of differential equation (5).  A 
generalized function is the derivative of such a solution: 
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 s(x, z)  is a piecewise-continuous function 

on x (Ref. 12), and [s(xdi, zd)] = s(xdi + 0) $ s(xdi $ 0) 
is the discontinuity at point xdi.  This function satisfies 
the energy conservation law (5) including the 
singularity points x = xd, z = zd because for 
I(xdi, zd) = 0 the equality of theory of generalized 
functions I(xd, zd) δ(x $ xd) = 0 (Ref. 12) is satisfied.  
It seems likely that within the framework of the theory 
being studied it is impossible to specify the rule  
for selection (control parameter) of any specific 
piecewise-continuous solution.  Therefore, among the 
infinite set of possible solutions a solution without 
discontinuity appears, i.e., without dislocations.  
Strictly speaking, zero intensity at any point of space 
enables one only to assume the availability of wave$
front dislocations at this point. 

In our opinion, expressions (7)$(8) for phase 
derivatives in terms of the intensity make it possible to 
obtain an interesting relationship.  Acting on Eqs. (7) 
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$ the nonlinear integro-differential equation for the 
intensity.  From Eq. (11) with k → ∞, the 
extraordinary geometric-optical approximation 
 

∂
∂z

 

⎩
⎨
⎧

⎭
⎬
⎫1

I(x, z)
 
∂
∂z

 

⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
$ ∞

∞

 
 dx' sign(x' $ x) I(x', z)   = 

 
 

= 
∂
∂x

 ε′(x, z) 
1
4
 
∂
∂x

 × 

 

× 

⎩
⎨
⎧

⎭
⎬
⎫1

I2(x, z)
 

⎣
⎢
⎡

⎦
⎥
⎤∂

∂z
 ⌡⌠
$ ∞

∞

 
 dx'sign (x' $ x) I(x', z)

2

 (12) 

 
follows containing neither eikonal nor phase.  Owing to 
the complexity of Eqs. (11)$(12), it is hardly probable 
that they can be a serious alternative to traditional 
equations of wave and geometric optics.  However, in 
our opinion, their analysis and investigation of possible 
ways of their solution will be useful. 
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