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Tightly focused propagation of high-power femtosecond laser radiation in air is considered. 

Based on numerical solution of the nonlinear Schrödinger equation for complex envelope of light 
wave electric field, evolution of the beam effective radius is studied. Dependence of the rms size of  
a focal spot and the maximally attainable intensity of radiation at the spot focal waist on the initial 
laser power is established. It is shown that tight spatial focusing of ultrashort laser pulse can lead  
to photoionization of the medium and plasma generation in the region of maximal beam intensity. 
This may prevent the light wave intensity from its further growth in the focal region and retard the 
transversal contraction of the beam as a whole. 

 

Introduction 
 

Geometric focusing of laser beams or, in other 
words, control for the curvature of initial phase front 
of a light wave is traditionally used to concentrate 
light energy in space and to increase radiation power 
density. Obtaining of small, close to diffraction 
limit, dimensions of waist, and, simultaneously, high 
intensity of a light beam is of primary importance in 
many fields of modern science and technology, for 
example, laser producing of multilayer optical 
structures in dielectrics,1 laser cell surgery,2 laser 
scanning microscopy of living tissues,3 and laser 
processing of metals and ceramics.4 The use of laser 
sources, generating high-power femtosecond pulses 
for these purposes opens additional promises for 
increasing the laser beam intensity in the focal waist 
up to “atomic” levels (∼ 1019 W/cm2) at a total pulse 
energy of only few millijoules.5 Advantages of just 
ultrashort laser action on targets include low energy 
ionization and ablation thresholds of materials as 
compared to longer laser pulses, as well as minimal 
thermal and mechanic damages under laser irradiation 
of sample regions adjacent to the zone. 

High peak power and intensity of femtosecond 
pulses may disrupt linear focusing still before the 
target. In gas and condensed media, the Kerr self-
focusing of radiation, multiphoton absorption, plasma 
formation in a medium, and other nonlinear effects 
lead to nonlinear changes in optical properties of the 
medium. Under these conditions, linear theory of 
diffraction of electromagnetic radiation, which gives 
sufficiently explicit relations between numerical 
aperture of the focused beam and the size of its focal 
spot, cannot be applied even for pre-estimates of 
high-power ultrashort laser pulse parameters in the 
region of their focusing. 

Based on numerical simulation, this paper 
considers formation of the spatial structure of focal 

waist of initially tightly focused high-power femtosecond 

radiation under conditions of nonstationary self-
action. The emphasis is made on the study of the 
dependence of the effective size of focal waist and 
maximally attainable radiation intensity of the initial 
power of laser radiation at the femtosecond pulse 
focusing in air. 

 

Linear and nonlinear focusing  
of laser radiation 

 

In case of linear propagation of laser beam, whose 
envelope of the electric field E(r⊥, z) is described by 
the following Gaussian function 
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in a medium (refractive index n0), the radius of focal 
waist of the beam Rf is  

 0
0 0f

2 2 4 2
0 0 0 0

1

1 4/

F
R R R

F k R F

= =

+ +

, (2) 

where ⊥ = +
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x yr  is the transversal coordinate; E0 

is the amplitude; 
2

0 0f ( )k F⊥ϕ = − r  is the wave phase 
caused by the initial focusing; R0 is the initial radius 
of the beam; F0 is the initial curvature radius of the 
wave phase front; k0 = 2πn0/λ0 is the wave number; 
λ0 is the wavelength in vacuum. The waist itself has 
the center at a point 2

0 0f 4 ( 4)z F F= +  (linear focus) 

and the characteristic length 
2
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Hereinafter in the text, for convenience we normalize 
dimensional parameters to the Rayleigh length 

2

R 0 0 2 :L k R=  Rf f/ ,z z L=  0 0 R/ .f F L=  
The radiation wavelength λ0 is a natural 

restriction on the extension of the focal waist. 
According to Eq. (2), we can estimate the attainable 
radius of the focal spot6 as *

0f 2.R λ�  
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At the beam focusing, the average (over the 
cross section) radiation intensity in the focal spot 

2

0f f/( )I P R= π  ( ( )
2

0 0 8 dP cn E ⊥= π ∫ r  is the initial 

power of radiation) increases as compared to the 

initial value of 0I  proportionally to the square of the 

reciprocal natural (diffraction) angular divergence θd: 
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In a medium with cubic optical nonlinearity of 
the Kerr type, the light beam propagation has a self-
action character. The polarizability of molecules and, 
consequently, the refractive index of such a medium 
begin to depend on the optical field intensity 

n(I) = n0 + n2I, where the parameter n2 characterizes 
the optical strength of the Kerr effect. This leads to 
the light wave self-focusing. According to the self-
focusing theory,7 if the beam power is higher than 
some threshold value Pc, being the critical power of 
the self-focusing, then, due to the Kerr effect, the 
beam experiences transversal collapse (contraction to 
a point) at a distance K 1 1z = η − , where 
η = P0/Pc. The value of Pc is determined by a 
nonlinear addition to the refractive index of the 
medium n2 and can be expressed as ( )2

c 0 22 .P n= λ π  It 
is obvious that at η = 1 for collimated radiation the 
nonlinear Kerr lens compensates natural blooming of 
the beam. 

In terms of linear optics, the action of the Kerr 
effect is equivalent to focusing of the light beam by a 
spherical lens with the focal length dependent on the 
beam power. If the laser beam is initially focused at 
the point zf and propagates through a Kerr medium, 
then the resultant position of its nonlinear focus zN is 
determined by the joint action of the initial and 
induced focusing: 

 ( )N K 0 K 0 .z z F z F= +  (4) 

Estimates of focusing characteristics of a beam in 
a Kerr medium based on equations of the theory of 
stationary self-focusing7 suggest that radiation can be 
focused to a spot with size even smaller than the 
diffraction limit, which would allow obtaining 

ultrahigh intensities of the optical field in an extremely 
small volume of a medium.8 However, as it will be 
shown below, this effect is not actually observed, 
because mechanisms preventing further self-contraction 
of the beam always take place in a medium at high 
intensities. Most significant of these mechanisms in 
gaseous and condensed media are photoionization and 
plasma formation in the beam channel. 

The Drude–Lorentz model of the free-electron 
gas9

 gives the variation of the complex refractive index 

of a medium m = n + iκ upon its photoionization as 
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where 
2

p e e 0/( )e mω = ρ ∈  is the plasma frequency; ρe 

is the concentration of free electrons (plasma 
density); τc is the characteristic time of collision of 
free electrons with heavy particles; å and me are the 
electron charge and mass; ω is the frequency of the 
light wave; ∈0 is the universal electric constant. As 
can be seen from Eq. (5), the influence of plasma 
nonlinearity on the optical field manifests itself both 
in the change of the wave phase (real part of mp), 
leading to wave defocusing, and in the decrease of the 
field energy (imaginary part of mp) due to photon 
absorption by free electrons through the mechanism 
inverse to the deceleration emission. In this case, ⏐mp⏐ 
is proportional to the instantaneous plasma density ρe. 
  The instantaneous concentration of free electrons 
in the medium can be determined from the rate 
equation taking into account the multiphoton and 
cascade mechanisms of ionization, as well as the 
decrease in the electron concentration due to their 
recombination with ions: 

 ( ) 2e c

nt e e r e

0 i

( ) ,IW I I
t n E

∂ρ σ
= ρ − ρ + ρ − ν ρ

∂ Δ
 (6) 

where WI(I) is the variable (with intensity) 

photoionization rate of the medium; ρnt is the density 
of neutral atoms (molecules); 

 ( )2 2 2
c p c e c 1 ;c⎡ ⎤σ = ω τ ρ ω τ +⎣ ⎦

 

ΔEi is the cross section of the cascade ionization and 
the ionization potential of a molecule, respectively; νr 
is the recombination rate. As high-power femtosecond 
laser pulses propagate in a gas, two last terms in the 
right-hand side of Eq. (6) appear to be insignificant 
as compared to the first term. Therefore, they are 
usually neglected in particular estimates of the laser 
plasma density. 

The photoionization of molecules leads to 

additional absorption of the radiation energy in the 
medium. The nonlinear absorption coefficient of the 
medium αI associated with this process has the form   

 ( )i nt e

( )
.I

I

W I
E

I
α = Δ ρ − ρ   

Then the total absorption coefficient of the wave 
energy at plasma formation in a gas can be determined 
taking into account Eqs. (5) and (6): 

 ( )p c e i nt e

( )
,I

N I

W I
E

I
α = α + α = σ ρ + Δ ρ − ρ  (7) 

where αð = Im(mp). The energy loss of radiation 
manifests itself, first of all, in the decrease of the 
instantaneous pulse intensity. Therefore, the focusing 
effect of the Kerr nonlinearity decreases as well. 
  Thus, at spatial focusing of an ultrashort laser 
pulse, one should take into account not only the 
appearance of the nonlinear Kerr lens, but also the 
inverse effect of plasma nonlinearity on a light wave. 
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  It should be noted that at high radiation 
intensities, the medium hyper-polarizability may 
appear due to five-order nonlinear susceptibility in 
terms of the field χ(5). In this case, the refractive 
index can be represented as a sum of three terms: 
n(I) = n0 + n2I – n4I

2. As is seen, the nonlinear 
addition n4 decreases the focusing action of the Kerr 
effect by the saturation mechanism: 

 ( )2 2 4 2 sat( ) 1n I n n I n I I= − +� , 

where Isat = n2/n4 is the characteristic intensity of the 
saturation.10

 It is obvious that the particular role of 
the five-order nonlinearity in the process of radiation 
self-focusing is determined by the relation between 
characteristic intensities of saturation and plasma 
formation, which, in their turn, depend on optical 
characteristics of the medium itself. For example, for 
atmospheric air at λ = 800 nm, according to Ref. 11, 
n2 = 3.2 ⋅ 10–19

 cm2/W, n4 = 2.5 ⋅ 10–33 cm4/W2, while 
the saturation intensity is Isat = 1014 W/cm2. In this 
case, active plasma formation in air, as numerical 
calculations show (see Ref. 12), starts already at pulse 
intensity I ∼ 1013 W/cm2. This fact allows us to 
ignore hyper-polarizability of the medium in future. 
 

Numerical model  
of radiation propagation 

 

As a mathematical basis for simulation of 
ultrashort radiation focusing in gas, we used the 
formalism of the nonlinear Schrödinger equation 

(NSE) written for the slowly varying complex 

amplitude of a light pulse electromagnetic field 
U(r⊥, z; t) = E/E0. This equation takes into 
consideration not only beam diffraction and frequency 
dispersion of air, but also some nonlinear effects 
responsible for amplitude and phase self-modulation 
of the light wave (see, for example, Ref. 13). Let us 
write NSE in the following form: 

 ( )
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where  

 np = Re(mp); ω
′′ = ∂ ∂ω

2 2
k k  

is the dispersion of group velocity of the light pulse 
in air (0.21 fs2/cm at λ = 800 nm);  
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2

t

n
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is the cubic nonlinearity of the refractive index taking 

into account the instantaneous and lagger components 
of the Kerr effect; β is the specific fraction of the 
lagged Kerr effect. The nonlinear absorption coefficient 
of the medium αN is taken into account through 
Eq. (7). 

The lagger component in the Kerr effect is 
connected with the finite time of orientation of 
anisotropic molecules along the electric field vector. 
This lagged character of the response was taken into 
account within the framework of the decaying 
oscillator model14: 

 ( )R Rd( ) ( ) exp / sint t t tΛ = θ Ω − τ Ω , 

where ΩR is the frequency, and τd is the characteristic 
decay of molecular vibrations (for air ΩR > 20 THz, 
τd > 70 ns); θ(t) is the Heavyside function. 

The numerical integration of NSE (8) was 
performed using the technique of division of the 
initial problem at each step over the evolutional 
variable z into two problems: nonlinear one, in which 
formation of the induced phase of the field is 

calculated, and linear one, in which the field amplitude 
is transformed as a result of diffraction and 
dispersion of the wave packet with the phase front 
determined at the previous step. To improve the 
stability of computations, we used the combination of 
the Fourier spectral method (in time), the implicit 
three-level difference scheme of the Crank–Nicholson 
type (in transversal coordinates), and the adaptive 
correction of the grid step in the evolutional variable. 
The concentration of free electrons ρe was determined 
through solution of Eq. (6) by the Runge–Kutta 

method. 

 

Model of photoionization  
of a gas medium 

 
As a model of photoionization of air, we used the 

Perelomov–Popov–Terent'ev (PPT) model,15 which, 
as was stated in Ref. 16, most completely describes 
the available experimental data. According to the 
PPT model, the photoionization rate WI(I) of the 
level with the bond energy ΔEi, orbital moment l, 
and its projection j to the field direction has the form 
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where 0 0 e ic m E

c I

ω ∈ Δ
γ =  is the Keldysh parameter; 

Ea = 105
 V/m is the strength of the intra-atomic field; 
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is the constant. Here = Δ Δ
*

H in Z E E  is the 

effective main quantum number; Z is the charge of 
the atomic residue; ΔEÍ is the ionization energy  
of the hydrogen atom; Γ is the gamma function. 
Other coefficients have the following form: 
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In practice, the use of Eq. (9) for calculation of 
the ionization rate is not always convenient in the 
NSE numerical simulation, since it requires calculation 
of many coefficients at every step as the wave 

intensity changes. Therefore, for faster computations, 
we approximated the dependence WI(I), described by 
Eq. (9), by the function WI(I) = AW(I)IK, where the 
coefficients AW and K are selected according to the 
medium type and laser radiation wavelength. Thus, 
for atmospheric gases, we obtained the functional 
dependence of the form 
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where 
for O2: K = 7.44; A0 = 10–119.378 s–1

 (m2/W)K; 
A1 = 13.445; A2 = 2.041; Ic = 1020.616 W/m2, 

for N2: K = 10.165; A0 = 10–168.530 s–1
 (m2/W)K; 

A1 = 19.223; A2 = 2.012; Ic = 1020.688 W/m2. 

 

Structure of nonlinear focus  
of ultrashort pulse 

 

Consider the evolution of parameters of high-
power femtosecond radiation during its focused 
propagation in air. For definiteness, we reproduce 
numerically the experimental conditions from Ref. 17. 
So, the initial form of the normalized envelope of the 
radiation electric field (Gaussian in time and space) 
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is specified in calculations by the following 
parameters: pulse duration tp = 60 fs, beam radius 
R0 = 2.8 mm (by 1/e level of the maximal intensity), 
and a wavelength of 800 nm. The initial curvature 
radius of the radiation phase front was taken equal to 
86 cm, therefore, its normalized value was 

0 0 RF F L=  = 0.028 (LR = 30.8 m). 

When specifying the initial radiation energy, 
two versions were first considered: subcritical 
radiation power (η = 0.1, Pc = 3.2 GW/cm2) and the 
seven-fold excess of its peak power P0 above the 
critical level Pc (η = 7). Thus, we had the initial 
peak pulse intensity I0 = 1.3 ⋅ 109 and 9 ⋅ 1010 W/cm2 
in the first and second cases, respectively. The 
position of the nonlinear focus of the beam (4) at 

η = 7 can be estimated as zK = 13 m, zN = 81 cm, 
that is, the Kerr effect under these conditions only 
insignificantly shifts the focal waist of the beam from 
its position in the linear medium. 

Figure 1 shows the dependence of the laser beam 
transversal dimension on the longitudinal coordinate. 
In calculations, equation (8) was used. Figure 1 
demonstrates variation of two parameters: the 
geometric size R1 determined from the beam energy 

density profile ( )
∞

⊥ ⊥

−∞

′ ′= ∫( , ) , ; dw z I z t tr r  at the level 

1/e of the maximum and the effective radius Re, 
which is calculated as a normalized second-order 
moment of the wave intensity18: 
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where rgr is the radius vector of the beam centroid: 
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W is the total energy of the pulse. It should be noted 
that this parameter is useful in analysis of complex 
beam intensity profiles, because, according to its 
definition, the effective radius indicates the size of 
the spatial area, in which no less than 50% of the 
total beam energy is concentrated. For the Gaussian 
transversal intensity profile, the geometric R1 and 
effective Re radii have the same value. 
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Fig. 1. Geometric (curves 1 and 3) and effective (2) radii of 
tightly focused femtosecond beam as functions of the 
longitudinal coordinate at the relative initial pulse power 
η = 7 (1, 2) and 0.1 (3). Vertical arrow shows the position 
of the geometric focus. 



692   Atmos. Oceanic Opt.  /September  2008/  Vol. 21,  No. 9 Yu.E. Geints and A.A. Zemlyanov 
 

 

It is seen in Fig. 1 that the focused beam 
propagates under linear and nonlinear conditions in 
different ways. At the above-critical initial pulse 

power, (η = 7), R1 and Re differ widely starting 
already from the distance z > 40 cm. Then, in the 
region of the focal waist (z ≥ 80 cm), an extended 
axial structure – light filament – is formed. This 
difference is connected with the action of Kerr 
nonlinearity, which makes sharper the initially 

Gaussian beam profile and thus decreases its geometric 
size, but does not affect significantly the pulse energy 
redistribution over the beam cross section. 

In contrast to the geometric radius R1, evolution 
of the effective radius Re during focusing the beam of 
above-critical power demonstrates a pronounced waist 
with a center at zg > 84 cm. It is important to note 
that the effective radius of the tightly focused beam 
under both linear and nonlinear conditions evolves 
similarly up to the global nonlinear focus zg, which is 
formed earlier than the geometric one under self-
focusing. 

The first minimum in the dependence of the 
geometric radius R1(z) appears at the point of the 
local nonlinear focus z = zN and amounts to 

R1(zN) > 114 μm, which is nearly by three times 
wider than the radius of the beam focal waist at 
linear propagation: Rf = 43 μm. This is caused by the 
processes of air ionization and plasma formation, 
which prevent the further contraction of the beam, 
forming, along with the Kerr effect, a light filament 
at the axis with the quasiconstant peak intensity 
Im ≈ 4 ⋅ 1013 W/cm2. The transversal radius of this 
structure is not, however, constant. It pulses, reaching 
the absolute minimum R1 > Rf at the point z > 89 cm. 
Then the beam begins to stably diverge. 

Consider the stages of formation of the focal 
waist of ultrashort pulse in more detail. To do this, 
introduce an additional dimensional beam parameter– 
an instantaneous effective radius Ret, whose square is 
determined by 
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As is seen, this parameter determines the effective 
size of every individual “temporal cross section” of 
the pulse and is related to the time-integral effective 
radius (10) through the obvious relationship  
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The evolution of Ret along the path is shown in 
Fig. 2a. The curves correspond to different instants 
within the pulse duration, whose particular positions 
are numbered in Fig. 2b. 
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Fig. 2. Evolution of the temporal effective radius Ret of the 
focused femtosecond pulse with the initial intensity η = 7 
(a) and time profile of the relative pulse intensity (b). 
Curve numbers in Fig. 2a correspond to time pulse cross 
sections shown in Fig. 2b. 
 

Thus, curves 1–3 give the effective radius of time 
cross sections for the leading front of the pulse, 
curves 7–9 give it for the trailing front of the pulse, 
and the size of the profile cross sections at points  
4–6 corresponds to the central part of the laser pulse. 
This figure also shows the evolution of the integral 
effective radius Re at nonlinear and linear (curves 10 
and 11) propagation of the beam. 

Analysis of Fig. 2 shows that all time cross 
sections of the pulse evolve identically up to a 
certain point of the path (z > zN). Then each of them 
forms a focal waist, whose position at the path zft 
and the transversal radius Retf = Ret(zft) depends on 
the position of every cross section in the pulse. The 
leading front of the pulse (curve 1), having the sub-
critical power, practically does not induce the medium 
nonlinearity during propagation, and the law of 
evolution of its spatial radius is the same as in the 
linear case (curve 11). The higher is the instantaneous 
power (curves 2–4), the stronger is the effect of the 
Kerr self-focusing. Since the density of free electrons 
at every point of the path increases with time upon 
photoionization of the gas [see Eq. (6)], the following 
(in time) pulse levels experience a stronger 
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compensating action of the plasma nonlinearity. This 
increases the focal waist size in every following time 
level, making its center closer to the path beginning. 
As a result, in place of one focal spot localized at a 
point, known from linear optics, an extended waist 
of variable diameter is formed upon focusing of a 
high-power femtosecond pulse. This waist consists of 
many focal spots corresponding to different time 
pulse layers. Time layers lying at the leading front of 
the pulse have the smallest radius Retf in the point zft 
of its focus, while layers lying at the trailing front 
have the largest radius (Fig. 3). 
 

–1 0 1
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2 

1 

I, rel. units Retf /R0 

 
Fig. 3. Transversal radius of the focal waist of the 
femtosecond pulse: effective radius of the focal waist Ret  
of every time layer as a function of its position in the pulse 
(1); waist radius at linear focusing of radiation (2). Time 
profile of the pulse is shown by a dashed curve.  
 

The considered physical pattern of the layer-by-
layer self-focusing of an ultrashort light pulse is in 
qualitative agreement with the model of dynamic 
moving focuses (DMF), which was initially proposed 
in Refs. 19 and 20 and then modified for ionized 
medium and focused beams in Refs. 21 and 22. In this 
theoretical model, a light filament is treated as a 
series of local focuses of different time pulse layers 
appeared at a different distances from the beginning 
of the optical path. The transversal size of the 
filament at every point is equal to the size of the 
corresponding focal spot. A consequence of the DMF 
model and, at the same time, its limitation is the fact 
that for a pre-focused beam the formed filament 
cannot go beyond the beam geometric focus, while 
experiments and numerical calculations (see, for 
example, Fig. 1) contradict this statement. 

This contradiction can be resolved, if to analyze 
the beam self-focusing in terms of effective parameters. 
In this case, as it is seen from Fig. 2a, the position of 
the focal waist of the instantaneous effective radius, 
which bounds the spatial area of localization of the 
instantaneous power of every temporal beam layer, 
always does lie to the left from the point of the beam 
geometric focus zf (minimum of curve 11). From this 
point of view, the DMF model does not contradict 
the physical pattern of the considered phenomenon 
and can be used for qualitative interpretation of 

nonstationary self-focusing of tightly focused radiation 
as well. 

The effective beam radius being integral over the 
whole temporal profile of the beam (global effective 
radius), indicates the zone, in which the most part of 
radiation energy is localized. Therefore, the evolution 
of Re almost fully copies the evolution of the 
instantaneous radius Ret of the pulse central part 
(curves 5, 6, and 10 in Fig. 2a merge together). It 
should be also noted that the output angle of the 
effective radius of every temporal cross section at the 
focal point exceeds the corresponding input angle and 
monotonically increases to the pulse end due to the 
increasing action of the plasma nonlinearity 
(refraction and absorption). 

Of interest is the maximally achievable level of 
the pulse intensity at the focal waist of a femtosecond 
beam at variation of its power. According to Eq. (3), 
for conditions of numerical experiment at linear 
focusing of the beam with 0F  = 0.028, we have the 

calculated degree of intensity growth μf = 5102. This 
value of relative intensity, as is seen from Fig. 4, is 
achieved only at an essential sub-critical pulse power 
(η ≤ 0.1). 
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Fig. 4. Degree of intensity growth μf at focal waist of a 
femtosecond pulse and maximally achievable intensity If as 
a functions of η. 

 

The increase of the initial power of radiation first 
leads to the slow decrease of μf in the range of moderate 

power values (η = 0.5÷1). With further growth of η, 
the relative intensity at the focus decreases almost by 
the linear law. 

The coordinate of the path point z*, at which the 
pulse intensity reaches its maximum, is shown in 

Fig. 5. 
It is seen that when focusing radiation of sub-

critical power, the maximum lies exactly in the 
center of the linear focal waist zf = 85.9 cm. With 
the further growth of the pulse power, the point of 
maximal intensity approaches the path beginning and 
the inequality z*

 > zg always holds. In other words, as 
a femtosecond pulse is focused, the maximal radiation 
intensity is gained near the global rather than local 
focus of the beam. The local focus zN indicates only 
the beginning of the light filament. 
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Fig. 5. Coordinate of the global maximum of the pulse 
intensity z* and the maximal concentration of free electrons 
ρem as functions of η. 

 

Consider absolute values of the maximal 
intensity, which take place in the beam focus zone 
(see Fig. 4, dashed curve). A break in the dependence 
If (η), clearly seen in Fig. 4, corresponds to changes 
of beam focusing conditions, which take place when 
the intensity at the focus If achieves a value of  
2–4 ⋅ 1013 W/cm2. In this case, as was noted above, 
the plasma nonlinearity begins to prevent markedly 
(through variation of the complex refractive index 
[see Eq. (5)] the further growth of the beam 
intensity at the Kerr self-focusing. 

As the result of the competitive action of these 
two processes, dynamic balance is established in each 
time cross section of the pulse, at which the peak 
amplitude of the light wave becomes limited. If at 
the leading front of the pulse the limitation of the 
peak intensity is connected with the use of the wave 
energy for the gas photoionization (imaginary part of 
mp), then at the center and at the trailing front of 
the pulse the refractive action of the already formed 
plasma dominates (real part of mp). 

The calculations show (Fig. 5, dashed curve), 
that the maximal concentration of free electrons in 
the beam channel ρem, at which focusing conditions 
alternate, corresponds to ρem ∼ 1023 m–3. 

At essentially above-critical level of the beam 
power (η >> 1), the continuing growth of the peak 
intensity at the nonlinear focus also increases the 
density of the forming plasma, thus increasing ρem up 
to the level ∼1026 m–3, which is already close to the 
equilibrium concentration of neutral nitrogen 

molecules in air (according to the conditions of 
numerical experiment ρnt ∼ 1.2 ⋅ 1026 m–3). This is 
indicative of high, close to unity, degree of medium 
ionization by radiation and possible occurrence of 
optical breakdown in air, when the conditions for 
electron avalanche take place in the beam channel 
(according to Ref. 9, breakdown threshold for 

atmospheric air is ∼ 2 ⋅ 1014 W/cm2). The further 
increase of the initial power of radiation already is 
not efficient from the viewpoint of increase of the 
peak intensity at the global focus of the beam, since 

the optical breakdown plasma, formed at the leading 
front of the pulse, blocks the propagation of the rest 
of the pulse. 

Introduce another effective parameter characterizing 
propagation of the ultrashort pulse, namely, effective 
intensity Ie, which is defined as follows: 
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is the rms pulse duration. According to this 
definition, for the Gaussian (in space and time) pulse 
in the linear medium, the effective radiation intensity 
Ie(z) at every point of the path is equal to the peak 
value of the real intensity. The ratio μå = Ie(z)/I0 
along the propagation path for focused beams of the 
different initial power is shown in Fig. 6. 
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Fig. 6. Relative efficient intensity of laser radiation μe as a 
function of propagation distance z at different initial relative 
pulse powers: η = 0.1 (1), 1 (2), 3 (3), 15 (4), and 100 (5). 
 

It is seen how nonstationary self-action of 
radiation changes the dynamics of beam focusing, 
resulting in the shift of its global focal waist and the 
decrease in the maximum average intensity at the 
global focus. 

Figure 7 shows the effective radius of the focal 
waist Ref = Re(z = zg) formed at spatial radiation 
focusing of the femtosecond beam of different initial 
powers. This figure shows that under conditions of 
significantly nonlinear radiation propagation (η > 1) 

the focusing of a pulse to the level of the diffraction 
limit, predicted in the linear theory, becomes 

impossible [see Eq. (2)]. 
It should be emphasized that here we deal the 

effective integral size of the focal waist (12) calculated 
as a focal radius of every time layer of the pulse, 
averaged over the temporal power profile. This radius 
characterizes the size of the area of the pulse energy 

localization, and may differ from an instantaneous 

value of the beam radius, determined from the energy 
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profile. As was noted above (Fig. 3), this size has the 
minimal, diffraction-limited value in the zone of low 
intensity at the pulse leading front. Just this fact can 
likely explain the extremely small size of the focal 
spot (2–3 μm) in diameter, observed experimentally 

in Ref. 5 at focusing femtosecond pulses of the 
Ti:sapphire laser in air. Initial peak power in pulses 

was ∼1014
 – 1017 W/cm2

 and, consequently, initially 
exceeded the breakdown threshold of air. In other 
words, based on the above results, the diffraction-
limited (minimal) value of the effective transversal 
dimension of the focal waist of an ultra-short high-
power pulse can be formed only at the leading front 
of the pulse, where the density of the formed plasma 
is still low and, correspondingly, its defocusing 
action on radiation is weak. 
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Fig. 7. Effective radius of focal waist of the femtosecond 
beam Ref as a function of the initial radiation power η. 
Dashed curve shows the radius in the case of linear 
propagation.  
 

Conclusions 
 
Thus, numerical simulation of propagation of a 

tightly focused high-power ultra-short laser pulse in 
air has shown that the process of formation of a focal 
waist has a dynamic character for such beams. This 
means that the spatial shape and the size of the waist 
(in both longitudinal and transversal directions) 
become dependent on the initial pulse power. Spatial 
focusing of the ultrashort laser pulse of even sub-
critical power (for the process of the Kerr self-
focusing) can lead to photoionization of the medium 
and plasma formation in the area with the maximal 
beam intensity, that will hinder the further growth 
of the wave intensity and transversal contraction of 
the beam as a whole. The higher is the pulse power, 
the more complex is the spatiotemporal structure of 
the focal waist, which is transformed from a spot, 
localized at a point, into an extended axial filament 
of variable diameter, consisting of many focal spots 
corresponding to individual time layers of the pulse. 
  Evolution of the rms beam size along the path is 
qualitatively similar to the behavior of linearly 
focused radiation, when a pronounced waist is formed 

at the point of the global focus. The difference of 
conditions of nonstationary focusing of a high-power 
pulse consists in the change of radiation divergence 
upon propagation through the global focus and in 
increase of the transversal dimension of the waist 
with increase of the pulse power. 

The maximal degree of the beam intensity growth 
as a result of its geometric focusing decreases with 
the pulse power increase. From the viewpoint of the 
obtained extremely high values of the peak intensity 
(or energy density) at the global focus, the increase 
of the initial radiation power is inefficient, because 
the optical breakdown plasma, formed at the leading 
front of the pulse, blocks the focusing of the 
following time pulse layers. 

Note that the results presented in this paper 
correspond to the situation of focused propagation  
of a high-power femtosecond laser radiation in 

atmospheric air and lie within the framework of the 
used model of medium photoionization (9). Application 
of other ionization model or study of laser pulse 
propagation in a different physical medium, having, 
for example, a higher atomic ionization potential may 
change quantitatively the estimates presented. In 
particular, there exist theoretical calculations23 
showing (with the model of a hydrogen atom taken 
as an example) that in superstrong optical fields 
(∼1015 W/cm2) the atom becomes resistant to 
ionization by radiation. This effect leads to a decrease 
of the photoionization rate with increase of the light 
wave intensity, which, in its turn, may restrict 
plasma formation in the region of the beam focus and 
remove obstacles for further growth of the radiation 
intensity. 
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