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orientation of non-spherical aerosol particles
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It is shown that if there are forces in the atmosphere that may cause orientation, at least in part,
of an ensemble of non-spherical aerosol particles, the direction of these forces action can be found from
measurements of the backscattering phase matrices (BSPM). Moreover, some parameter X is being
determined that characterize the degree of the orienting action of the force field on the aerosol ensemble.

Lidar measurements of the backscattering phase
matrices (BSPM) have shown that deviations from
random orientation of particles are often observed in
crystal clouds.! Moreover, it is not only the action of
aerodynamic forces on the falling down particles that
may favor the orientation of particles, but also the
forces of other origin can cause a preferred orientation
about some azimuth direction. Possible reasons for that
may be the wind shears and electric fields. Obviously,
the direction of the preferred orientation is related to
the direction of the action of these forces. The approach
developed by the authors of Ref. 2 to determination of
the parameters of orientation of a polydisperse ensemble
of some axially symmetric particles was used in Ref. 1
for determination of the direction of preferred
orientation at interpretation of the experimentally
measured BSPMs. It is not only the direction of
preferred orientation but also the Mises distribution
parameter,3 which is the measure of grouping of the
particle axes about the mode of the distribution, i.e.,
around the direction of preferred orientation, was
determined for ensembles of such particles.

However, the representation of actual crystal
clouds using the aforementioned ensembles is, of course,
too  idealized. =~ Numerous papers devoted to
microphysical investigations reveal a wide variety of
the particle shapes, including asymmetric ones, for
which it is difficult to construct a criterion of the
preferred orientation, because no symmetry axes or
planes can be isolated in this case. Therefore, it is
expedient to consider a more general formulation of the
question on what could be the reason for the BSPM
invariance relative to rotation of the coordinate system,
or to the rotation of a cloud as a whole, if that would
suit understanding better.

The invariance is considered here as follows. Let
M be the BSPM determined at a certain orientation of
the coordinate system rigidly tied to the experimental
setup, then, if turning the latter by an angle ® around
the direction of the wave vector of the incident
radiation (z-axis of the xoz coordinate system), the
matrix M is transformed according to the following law
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where O(®) is the operator of rotation
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The requirement of invariance is expressed by the
equality

M =M. (3)

Obviously, this requirement should hold for the
BSPM of an isotropic ensemble, at least relative to the
rotation around the z-axis.

Direct calculations of the matrix M' at arbitrary
elements M;; of the initial matrix and comparison of

M;; with M;; show that the condition (3) is fulfilled
only for the matrix of a certain form, which is as

follows:

HMM 0 0 M14E

0 M 0 0
M= 22 . (1)
0 0 My 0

EMM 0 0 M44@

under the additional condition that
M22 = - M33. (5)

Besides, M4 = My is always fulfilled for the
BSPM of the form (4), and, as a particular case, these
elements can be equal to zero.

Matrices of the form (4) are determined as the
BSPM of ensembles of asymmetric particles of the same
kind either chaotically oriented in space, or oriented so
that the rotation symmetry relative to the wave vector
direction is kept. The elements M4 and M,y vanish if
the particles have such symmetry that they coincide
with their mirror reflections, or asymmetric but the
ensemble of such particles has mirror symmetry relative
to any plane containing the z-axis.
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Obviously, the requirement that particles have to
be of the same kind is not obligatory. Owing to
additivity of the scattering phase matrices, an ensemble
composed of sub-ensembles of particles of different
kinds, but so that each of them has the BSPM of the
form (4), will have the total BSPM of the same form
or its particular case at M4 = M,y = 0.

If the optical axis of a lidar is directed toward the
zenith and there are no another orienting factors except
for gravity, it is reasonable to expect the BSPM of the
form (4). This is true because the particles are either
truly randomly oriented in space or have some preferred
orientation at a zenith angles 6, while, at the same
time, being randomly oriented over the azimuth ®. Let
us call this state 2D random orientation. Superposition
of 2D and 3D randomly oriented sub-ensembles is also
possible. As it will be clear from the below, the
presence of a sub-ensemble with 2D random orientation
can be revealed by measuring BSPM at a slant position
of the lidar optical axis.

Let us emphasize that the matrix (4) was obtained
without any suppositions about the particle shape. It is
the invariant of the transformation (1) and means the
absence of any preferred azimuth direction. So, the
BSPM of an isotropic, on the average, ensemble
relative to the z-axis ought to have the form (4), and
one can interpret any deviation from this form to be
caused by the presence of asymmetry or a finite-order
symmetry relative to the rotation about the z-axis.

Naturally, one can assume the violation of such
symmetry in crystal clouds to be caused by the action
of some factor that orients the particles, with the
vector of the action not coincident with the vertical
direction. As a result, one can isolate a plane Py that
contains both of these directions.

It is reasonable to assume that the vector field of
orienting forces of non-gravitational origin s
homogeneous, at least within the limits of the volume
illuminated by a laser beam. Undoubtedly, the gravity
is such a field. Then, if the orienting effect of these
forces has led to an ordering of particles orientation
along some direction more probable, this probability
does not depend on which side from the plane P; a
particle is situated. Besides, the mirror reflected
position of the initial particle relative to Py has the
same probability, because it is impossible in the field of
uniform forces to point out a feature that would make
one of these positions preferred. For example, the
number of particles contributing to the lidar
backscatter from crystal clouds at a time is about 104-
106. Therefore, one may expect that the mirror
symmetry relative to Py occurs, on the average, in such
an ensemble and fluctuating deviations from it are
insignificant. One can reach the coincidence of the
reference plane xoz with the symmetry plane Py by
turning the coordinate system relative to the z-axis. The
BSPM in this particularly chosen system of coordinates
has a certain symmetry that follows from the symmetry
of amplitude scattering phase matrices.4> The
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frameworks of the paper do not allow to expound in
detail the proofs, so let us only present the BSMP in
this coordinate system:

MYy MY 0 0 ]
AJJM%Aﬁgo o []

_DO 0M23M24|:I
Lo o mtya, U

M, (6)

The zero superscript of the elements means that
the matrix is determined at coincidence of the reference
plane and plane of mirror symmetry of the ensemble of
particles. The following condition is fulfilled as for any
BSMP:

0 0 0 0
Miy = My and M3y =~ Mys.

The condition (5) may not hold for this matrix. But,
due to the known general property of BSPMs,
according to which

My — My + M3z — My, =0, @)
one can write
0 0 0 0
My — Myy = M3y — M3s. (®

Since the elements M{; and My, of any BSPM are
invariant at rotation, the right-hand side of the
equality (8) is also invariant.

For the reasons, which will be clear from the
below discussion, let us write the following identities:

0 0 0 0
- My — Mgz My + Mgy

MY, =E+F,
9
0 0 0 0
MY, _ My My My +tMss _ _pip
2 2
Let us also introduce the following notations:
0 0 0
Miy=A, Miy= My =B, (10)

0 0 0
M3y =D =— My3, My =C.

Let the BSPM which has the form (6) in a
selected coordinate system related to the plane Py be
measured now in the coordinate system turned relative
to the plane Py by the angle — ® around the wave
vector, i.e., clockwise if looking towards to the
incoming scattered radiation. The elements of the
BSPM in this new coordinate system are expressed
through the elements of the matrix (6) by use of the
transformation

M_, = O(= @) MyO(- ®). )

Formally one can present the matrix My as a sum

of diagonal matrix M(') with the elements A, E, —F and
C (see notations (10)) and the matrix
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M = (12)
Eo 0 F D E
00-D O
and write (11) in the following form:
M, = 0(— @) (M + Mp) O(— ®). (13)

But M is composed from invariant of rotation and
does not change at transformation (11), and (12) is
transformed to the matrix

0 Bcos2® —Bsin2® 0

cos2® Fcosd® —Fsind® —Dsin2®

sin2®  Fsind®  Fcosd® Dcos2® D (4
0 —Dsin2® —Dcos2® 0

The matrix (14) is obtained by turning the
coordinate system by the angle —® relative to the plane
Py, the position of which is assumed to be preset. On
the contrary, in experiments, the position of the plane
xoz related to the lidar is known, and one needs to find
the position of the plane Py. Obviously, this problem is
reduced to determination of the angle ® such that

0(®) M’ O(P) = My, (15
It can be ready seen that ® is determined by the
ratio of the elements of matrix Mg, for example,

M3 /My = tan2d®. (16)

It is easy to see that the direction @ is determined
independently of the presence of particles, which do
not undergo the orienting effect due to any cause, and
compose the randomly oriented sub-ensemble.

Let us denote the BSPM of such a sub-ensemble
by M. It is the matrix of the form (4).

Let us represent the matrix of the whole ensemble
as a sum of the matrices My, My and My and write the
transformation

M., = O(— @) (M, + My + Mp) O(— ).

But the matrices My and M are invariant relative
to rotation, and the problem is reduced to
transformation of the matrix Mj only related to sub-
ensemble of oriented particles. As before, the
determination of @ is done by use of Eq. (16).

Let the experimentally determined matrix M with
the elements M;; correspond to M_q. It can contain 10
different parameters. It follows from the property of
amplitude scattering phase matrix

Agp + Ay =0,
the consequence of which are the relationships for the
off-diagonal elements of the BSPM
Ml] = M]’i, lf i OI'j * 3,
Mij = - Mji’ if 7 OI']. = 3.

It is easy to see that these relationships hold for

the matrix (14). The elements My =A, My =C,
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M4 = My = H are invariant of rotation. Besides, one
more invariant is determined

E = (M“ —M44)/2 = (M22 - M33)/2.

These parameters are also related to BSPM of the
whole ensemble and determine its invariant component.
The parameters of the non-invariant component My: B,
D, F will be found after determination of @ by
Eq. (16). As was shown above that the transformation
(15) reduces the non-invariant component of the BSPM
to the form (12). Applying this transformation to the
elements of the experimental BSPM M;;, we obtain

B = M) cos2® — M3 sin2®;
D = M3y cos2® — My, sin2®; 7)
F = cos4® (Myy + M33) /2 — Moz sind®.

Now the experimental BSPM can be presented
using the parameters, which do not depend on the
coordinate system:

B 0 H
E+F00E

M= (18)
H(; 0 -E+F DE
0 -D C

Such a representation is very convenient for
making a comparison among the matrices obtained in
different experiments.

In addition to the properties inherent to any
BSPM, the only supposition used for obtaining the
matrix (18) was that about the presence of a sub-
ensemble of particles, for which the only plane Py
exists, relative to which it has the mirror symmetry. It
was assumed that it is the vertical plane, and the wave
vector of sounding radiation is directed toward zenith,
because in this case the reference plane already exists,
which contains the vectors of the gravity force and of
another orienting factor. If the aforementioned
conditions have been fulfilled, the experimental BSPM
should be reducible to the form (18). The experimental
BSPM published earlier in Ref. 1, and the matrix
transformed by the rule (15) at the experimental value
® =17.5° are written below. The matrices are
normalized to the element My so that m;; = M;;/M;q;
b= B,/Mj; and so on:

1 -0.56 0.38 —0.03
%0.56 0.37 —-0.21 0.20 E
Mexp =
Hosg 0.21 —0.10 —0.275
0.03 0.20 0.27 0.53
1 -0.66 0.01 -0.03
%0.66 0.45 —0.06 0.01 E
m. =
' Eo.m 0.06 —0.01 —0.34%
0.03 0.01 0.34 0.53
Elements of the anti-diagonal blocks of the
reduced matrix deviate from zero values within the
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limits of possible experimental errors, for which the
estimate of standard deviation is o =% 0.04. That
means that the measured BSPM can be reduced to the
form (18) with the normalized parameters a =1;
b=-066; ¢=0533; d=-034; h=0; e=0.22;
f=0.23. Knowledge of the aforementioned parameters
is important for interpretation of the BSMP. For
example, in this case large absolute value of the
parameter b together with also large f value allows us
to suppose that the ensemble consists of strongly
elongated and significantly oriented particles, and that
there are little of the asymmetric randomly oriented
particles if any, because the parameter % is close to
zero, and so on. But, it is an issue for separate
consideration, here let us consider only the parameter f,
which is the characteristic of a disturbance of the axial
symmetry of the ensemble of particles. According to
expression (17) it is determined from the elements of
the experimental BSPM as:

f = cosd® (mP + m§5P) /2 — m55P sind®,  (19)
and from the elements of the reduced matrix as:

f=(my + ms3) /2 (20)

[see definition (9)].
In Ref. 2 the parameter X was introduces, which is
written in the notations accepted here as

X =(my+mb3) /(1 +¢)=2f/(1+¢), (21)

i.e., the parameter f is normalized to the invariant of
the BSPM (a + ¢), where a = 1.

The parameter ¥ in the cited paper has the
meaning of the ratio Iy(k) /Iy(k) = iy(k), where Iy(k)
and Iy(k) are the modified Bessel functions of the first
kind and of second and first order, respectively; & is the
parameter of Mises distribution, iy — 1 at B - c. In
fact, already at k = 10 the function i, is close to 1, and
that means that the axes of almost all axially
symmetric particles are oriented along a preferred
direction.

One can show, but we will not do this here, that
the parameter X tends to 1 in increasing the degree of
orientation of the axially symmetric particles,
independently of the form of the angular distribution
function of orientations. It is caused by the fact that if
the axis of particle symmetry coincides with the
orientation plane, then

Aqp = A1 = 0.

It is not fulfilled for the asymmetric particles, so
X < 1. In the absence of orientation, i.e., for the
ensemble with axial symmetry relative to the wave
vector direction, its BSPM has the form (4), and f,
together with X, equals to zero. Hence, the domain of X
variation is defined as 0 < x < 1.
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The parameter X for mixed ensembles can have no
that direct relation to the degree of particles’
orientation as in the case of a homogeneous ensemble
considered in Ref. 2. The matter is that the parameter f
is determined by the state of only sub-ensemble of
oriented particles, but the denominator (1 +¢) is
related to the entire ensemble, and it is impossible to
isolate the fraction of this invariant related to the
oriented sub-ensemble. So the presence of small number
of strongly oriented particles can be masked by the
presence of a large number of the non-oriented ones.
Hence, one can consider the parameter X rather than a
qualitative characteristic showing the degree of the
effect of orienting factor on the ensemble of particles as
a whole. The discussion of the relation of the BSPM
symmetry to the orientation of particles will be
incomplete if we do not mention the problem on the
ambiguity of Eq. (16). It is easy to show that two
values of ® make the expression (16) hold:

®; 5 = arctan B—M—;i + DMiig +1 B (22)
The directions @4 and ®y are mutually orthogonal, and
this reflects the fact that there is one more position of
the reference plane different from the considered one
Py, at which the BSPM can be reduced to the
form (18). This follows from the symmetry property of
the amplitude scattering phase matrix. If turning the
coordinate system by 90°, the particles which were
mirror reflection of each other relative to the reference
plane, become such relative to the bisector plane.4 It
has the same consequences for the BSPM as the mirror
symmetry relative to the reference plane. But the signs
of the elements My and My, change, and the signs of
the elements M3; and My3 invert. This is easy to show
by substituting the angle ® of 0° and 90° to matrix (14).

To unambiguously select the angle ®, one needs to
consider two cases (at coincidence of the reference
plane xoz with the plane of symmetry of the ensemble
of particles):

a) My = My =B >0; b) My =My =B<0.

The following rules are fulfilled:
a) B> 0.

If Moy and M3y >0, then 0 <® <m/4
Myq and M3y <0, -M/2<d<-m/4
My >0, M3 <0, “M/4<®d<0
My <0, M3 >0, mn/4<®<m/2

b) B < 0.
If My and Mgy > 0, then —T/2 < ® <-T/4

M21andM31<0, 0<db<m/4
My >0, M3 <0, T 4<P<m/2
My <0, M3 >0, -T/4<d<O0.

won

Choosing between the alternatives “a” or “b”
requires @ priori information. This problem was
discussed in Ref. 2, where it was shown that the
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won

alternative “a” is realized at orientation of the
elongated axially symmetric particles across the
reference plane, and, on the contrary, the alternative
“b” is realized at grouping of the particle axes near the
reference plane.

Let us show that in some cases this problem can
be solved experimentally. Let the ensemble contain a
sub-ensemble with 2D chaotic orientation caused by
gravitational orientation. Such a sub-ensemble has axial
symmetry relative to the vertical direction, and its
BSPM at sounding along the zenith direction has the
form (4). Let us incline the optical axis of the lidar by
the angle 0 in an arbitrary azimuth direction. Then the
axial symmetry of the ensemble relative to the optical
axis of the lidar is broken, and there appears a plane
that contains the optical axis and the vertical.
Superposing the plane xoz of the measurement basis of
the lidar with this plane, we obtain a BSPM of the
form (6) with possible non-zero elements M4 and My;.
This BSPM gives the answer to the question on the
sign of B = M5, because the position of the symmetry
plane of the ensemble is known.

Let us summarize the above-stated material.
Analysis has shown that the direction of action of the
factor that orders the positions of particles relative to
some vertical plane can be determined by means of lidar
measurements of the BSPM independently of the shape
of particles that undergo the orientation effect and of
the presence of particles do not undergo such an
impact. The parameter X is determined, which
characterizes the strength of the orienting factor action
on the ensemble of particles.

If there are no orienting factors apart from
gravity, only the diagonal elements and, possibly, the
elements M4 and My, of the BSPM measured with a
lidar directed toward zenith will differ from zero. Then
Moy = — M33 equality should be fulfilled. If a sub-
ensemble with 2D random orientation has been formed
under the effect of gravitational sedimentation, this
state can be revealed by sounding along a slant
direction. Such a state can be also revealed at sounding
along zenith from the absolute values of the elements
Myy and Ms3. But, it requires knowledge of the
microphysics of particles and its relation to the BSPM
elements. These data can be obtained, for example, by
means of calculating the BSPM elements for different
models of aerosol ensembles.® However, these problems
were not discussed here.

In this paper we considered some effects that
result from the general properties of the BSPM
symmetry and symmetry of aerosol ensembles at only
minimal restrictions on the properties of the comprising
particles.

It was supposed that particles are non-spherical
and, at least, a fraction of them can take some
preferred orientation under the effect of physical forces
in the atmosphere. As to the assumptions concerning
the symmetry of an ensemble of particles, the
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assumption of axial symmetry is quite an obvious one in
the case of the gravitation-caused orientation only.

The assumption of the homogeneity of the field of
forces forming the orientation of particles along a
horizontal direction and, hence, of the presence of
mirror symmetry of the ensemble sounded relative to
vertical plane is not obvious, but it seems to be quite
reasonable. The criterion of its fulfillment can be
reducibility to the canonical form (18) of the BSPM
obtained in sounding along the zenith.

The BSPM obtained at slant sounding can be
irreducible to this form. If the effect of non-
gravitational orienting factor is significantly stronger
than the gravitational one, so that one can ignore the
latter, the formation is possible of an ensemble with
axial symmetry about the direction of the effect of non-
gravitational factor. In this case, inclining the lidar at
any angle, one can found the reference plane containing
the direction of sounding and that of the action of the
orienting factor. Then the reducibility of the matrix to
the form (18) remains. If the joint effect of
gravitational and another factor produces a set of
parallel vertical planes at a certain azimuth, relative to
which the ensemble of particles possesses mirror
symmetry, the reducibility to the form (18) remains
only at the optical axis of the lidar lying in the plane
from this set and containing the location point of the
lidar. Otherwise, the BSPM can contain 10 different
parameters and becomes irreducible to a simpler form.
But this variant is not interesting, because sounding
along the zenith is sufficient for determining the
direction of action of the orienting forces and the
parameter X, and the necessity of inclination of the
optical axis of the lidar can arise in the above-stated
case of the axial symmetry of the ensemble of particles
relative to the vertical direction. The inclination
toward any azimuth direction makes up the plane of
symmetry.
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