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The procedure of noise suppression in lidar signals based on wavelet transform is considered. 

Multiresolution analysis is briefly reviewed. It is shown that the discrete wavelet transform can 
successfully be used in such practical applications as noise suppression, while the signal structure in 
this case is kept unchanged. 

 
 

 

Introduction 
 
At laser sensing of the atmosphere, the signal 

continuously experiences various distortions caused 
by both the instrumental noise and the noise due to 
the atmospheric background. Noise of different type 
at the receiver input restricts the lidar capabilities. 
One of the ways to improve the accuracy and reliability 
of lidar measurements is application of signal 
processing algorithms allowing the increase of the 
signal-to-noise ratio. 

The investigations carried out in this field gave a 
rather wide set of different data processing algorithms. 
Thus, an algorithm using Markov filtration apparatus 
is described in Refs. 1 and 2. References 3 to 5 present 
the methods for separation of the signal from the 

background of noise through application of adaptive 

least-squares (LS) algorithms. But recently (in the 
mid-1980s) arisen signal filtering algorithms that are 
currently being intensely developed based on wavelet 
transform are capable of providing satisfactory results 
even with the noise level higher than 100% (Ref. 6). 
The aim of this paper is to study the applicability of 
the methods of wavelet analysis to isolation of the 
signal from the background of noise in lidar data. 

Analysis of signals in the terms of wavelet 
transform is divided into two types: continuous and 

discrete (dyadic). The continuous wavelet transform is 
largely used for analysis of transient processes, 
detection of sharp and hidden variations in a signal, 
study of nonstationarities, etc.7,8

 The discrete wavelet 
transform (DWT) has gained its widest utility in 

applied problems, for example, signal compression and 
noise suppression, because it can be carried out 
efficiently and without extra consumption of 
computer memory with the properly selected basis 
functions (the vector of coefficients recursively 

substitutes for the vector of the initial values). Since 
DWT is based on the ideas of multiresolution analysis 
(MRA), consider them first. 

1. Orthogonal multiresolution analysis 
 

Orthogonal MRA in the Hilbert state L
2
(R) is a 

series of closed nonoverlapping subspaces Vj ⊂  L
2
(R), 

j ∈  Z, whose incorporation gives, in the limit, L
2
(R) 

[Refs. 9–11]: 
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for any function s(t) ∈  Vj, its extended version belong 
to the space  

 Vj+1 (s(t) ∈  Vj ⇔ s(2t) Vj+1); 

there is such a function ϕ(t) that 
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form an orthonormal basis of the space V0. The 

function ϕ(t) is called the generating scaling function 
or the scaling function. Since ϕ0,k(t) form the 

orthonormal basis of the space V0, the functions 

ϕj,k(t) = 2 

j/2
ϕ(2 

j
t – k) form the orthonormal basis of 

the space Vj (the normalized factor 2 

j/2
 appears, 

because at the change of the variable t → 2t the norm 

of the function decreases by 2  times, which should 
be compensated for). 

Thus, the functions ϕ(t – k) of the basis V1 result 
from the basis V0 through simple double shrinkage of 
its elements ϕ(2t – k). Since any element of V0 belongs 
also to V1, ϕ(t) can be resolved in terms of ϕ(2t – k) 
[Refs. 10–12, 14]: 

 ( ) 2 (2 ),k

k K

t h t k

∈
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where , , .∈ ∈ ⊂kh R k K K Z   
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Equation (1) is called the scaling relationship for 
the scaling function, and the coefficients hk are called the 

coefficients of the scaling function or the scaling filter. 
In the majority of cases, there is no explicit 

equation for ϕ (t) [Ref. 12]. However, there is a fast 

algorithm, which uses the detailing equation for the 
scaling function ϕ(t) at points of the dyadic grid 

(t = 2–jk, j, k ∈  Z) [Ref. 13]. For every pair of 
subspaces Vj ⊂  Vj+1 of the MRA, there is a subspace 

Wj, being the complement of Vj up to Vj+1, such that 
 

 Vj ⊥  Wj, Vj+1 = Vj ⊕  Wj,  

that is, every element of Vj+1 can be written 

unambiguously as a sum of the elements Wj and Vj. 
The subspaces Wj are called refining or detailing in 
the meaning that they contain the detailed information 
needed for transition from the approximation with the 

resolution j to the approximation with the resolution 
j + 1. For the space W0, the generating wavelet ψ(t) 
is defined so that the series {ψ(t – k)}k∈ Z forms the 
orthonormal basis in W0. The functions  

 ψj,k(t) = 2 

j/2
 ψ(2jt – k)  

are called wavelets. The scaling relationship for 

wavelets is determined as: 

 ( ) 2 (2 ),k

k K

t g t k
∈

ψ = ϕ −∑  (2) 

where gk = (–1)
k
 h1–k. 

It follows from Eq. (2) that wavelets are fully 
determined by the scaling functions (1). Now the 

signal s(t) can be represented as a linear combination 

14: 
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The coefficients in Eq. (3) are determined from the 
condition of orthogonality of the basis functions: 

 0 0,( ) ( ) ( )dj j kc k s t t t
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The coefficients cj0(k) and dj(k) are DWT coefficients 
(spectrum of the signal s(t) in the bases of scaling 
functions and wavelets). The terms in Eq. (3) can be 
considered as representation of the signal s(t) in two 
projections: projection onto the space Vj0 (first term) 
and projection onto the orthogonal complement of 
Vj0 up to L2(R) (second term). The space structure is 
such that the projection of the signal onto the first 

space is “coarse” (low-frequency), while the second one 
is the high-frequency (it contains the detailed 

information about the signal that was lost at projection 
onto Vj0). 

Figure 1 shows the schematic layout of DWT. In 

every first unit, time readouts of the signal are processed, 
while every next unit processes the corresponding 
coefficients cj. As a result, we obtain jm – j0 – 1 
vectors  of  wavelet  coefficients  dj and one vector cj. 

Equations (1) and (2) allow obtaining the 

algorithms for fast calculation of cj(k) and dj(k). For 
an arbitrary scaling coefficient j, Eqs. (1) and (2) have 
the form: 

 

( 1)/2 1
,

( 1)/2 1

( ) 2 ( ) (2 2 )

2 ( 2 ) (2 ),

j j
j k

n

j j

n

t h n t k n

h n k t n

+ +

+ +

ϕ = ϕ − − =

= − ϕ −

∑

∑
 

(6)
 

 ( 1)/2 1
, ( ) 2 ( 2 ) (2 )j j
j k

n

t g n k t n+ +ψ = − ϕ −∑ . (7) 

 

 

 
 

Fig. 1. Schematic layout of the direct discrete wavelet transform. The decimation procedure is shown by arrows. 
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Substituting Eqs. (6) and (7) into Eqs. (4) and 

(5), we obtain the recurrence equations for calculating 
cj(k) and dj(k) (from “fine” to “coarse” scale): 

 1( ) ( 2 ) ( );j j

n

c k h n k c n+= −∑  

(8) 

 1( ) ( 2 ) ( ).j j

n

d k g n k c n+= −∑  

Here we face a problem on the first step of 
calculation of the coefficients cj 

at some value of the 

scale j = jm. For continuous signals, the highest level 
of resolution in the general case is equal to +∞. 
Therefore, the coefficients of signal representation with 

some finite resolution jm are usually taken as the first 
step, and the higher jm, the higher the accuracy of 
representation. The coefficient cj 

of the initial 
representation is determined from the equation:  

 
,

( ) ( ) ( )d .
m m
j j kc k s t t t

∞

−∞

= ϕ∫   

In the case of a discrete signal, the components 
of the signal itself are taken as the coefficients cj (k) 
of the level of resolution jm, that is, cjm(k) = s(k). 
The iteration procedures (6) and (7) are completed  
at j = j0, which is chosen based on the signal 
duration. 

 

2. Noise filtering procedure 
 
Classification of signals into all possible types is 

difficult, but wavelets turn out a powerful tool for 

rather simple characterization of a wide class of 
signals. 

15 Regardless of the nature of the information 
processed, for noise suppression it is necessary to take 
into account a number of problems, for example, to 

check for validity of the hypothesis on the Gauss 

character of the statistics and the spectral composition 
of the noise component, selection of the type of a 
function for threshold processing along with the 

criterion for calculation of the threshold itself, as well 
as standard problems of wavelet analysis having the 
general character: selection of the most appropriate 
wavelet basis, establishment of the needed depth of 
data decomposition, etc. 

Appearance of a number of methodological 
paradigms of noise suppression, as well as software and 

hardware solutions based on them has led to the 
significant progress in solution of the problem of 
noise suppression as one of the important problems of 
information processing.16 

In the terms of wavelet analysis, the noise filtering 
procedure consists of three stages (Donoho–Johnston 
paradigm) 

17–19: 
(a) Signal decomposition 
The type of wavelet and the number of the levels 

of resolution jm are selected. DWT of the signal s(t) to 
the level jm is calculated.  

(b) Selection of threshold for wavelet 

coefficients 
For any level from j0 to jm, the threshold εj is selected 

and  the  coefficients  are  modified  by a certain rule. 
(c) Signal reconstruction 
Inverse DWT is carried out with the use of 

modified wavelet coefficients by Eq. (3).  
From the statistical point of view, such a technique 

is nonparametric estimation of the regression model of 
the signal with the use of the orthogonal basis. 

20 This 
method works well with many real data, including 

signals having nonstationary noise characteristics, but 
the best results are obtained for rather smooth signals, 
that is, the signals, in whose decomposition only a 

small number of detailing coefficients differ markedly 
from zero. The optimal values of the parameters of 
decomposition depend on the signal characteristics 
and should be selected experimentally. 

21
 Here we can 

recommend the following:  
(1) The depth of decomposition determines the 

scale of rejected details: the larger its value, the large 
signal variations will be filtered out. At rather large 
values of this parameter (jm > 7), not only noise is 
suppressed, but also the signal is smoothed (its peaks 
are cut off).  

(2) The order of the wavelet determines the 

smoothness of the reconstructed signal: the smaller the 
wavelet order, the more pronounced are signal peaks, 
and vice versa – for wavelets of high orders the signal 
peaks are smoothed. The order of the wavelet becomes 
an important factor at inverse DWT, when it is 

necessary to smooth errors caused by rejection of 
small wavelet coefficients.22  

In practice, first, some initial level of 
decomposition (usually equal to three) is selected and 
the wavelet filtering is performed. Then the level of 
decomposition is increased until the best result is 
achieved, that is, the decomposition details contain a 
noise-like component, and the approximation rather 
well describes the initial signal. 

Consider the operation of the noise filtering 

procedure for problems of laser sensing. The lidar 
echo signal (test signal) calculated by the lidar 

equation in the single scattering approximation for 
the 5-km long horizontal path23,24 is taken as an input 
signal. The profile of the aerosol scattering coefficient 
is set homogeneous along the path (σaer = 0.2 km–1, 
σmol = 0.012 km–1) with imposed three aerosol 
inhomogeneities (σaer1 = 0.4 km–1, σaer2 = 0.6 km–1, 
σaer3 = 0.6 km–1). The echo signal obtained is 

supplemented with white noise so that the signal-to-
noise ratio does not exceed unity already at the 
distance about 3 km.  

To perform DWT, it is first necessary to choose the 
type of wavelet. Here there are no clear criteria. The 
similarity of the signal (as a whole, rather than some 
its part) to the transformation function usually serves 
as a parameter decisive for this choice, but this is a 

rather subjective factor. To facilitate this procedure, 
it is possible to use the criterion of minimum entropy.22 
Entropy of a signal with respect to the wavelet basis 
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reflects the number of significant terms in the 
decomposition (3) and is determined by the value of 
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The smaller this value, the more optimal is the basis 
of analysis for this signal. Usually, the higher is the 
order of the wavelet, the lower is entropy. For the 
lidar echo signal, the wavelet of tenth order from the 
family of orthogonal wavelets with a compact carrier – 
Symlet wavelet – was taken. The scaling and wavelet 
functions of the selected basis are shown in Fig. 2. 
 

 
Fig. 2. Plot of the scaling function and Symlet wavelet of 
the 10th order. 

This family of wavelets is described in a more 
detail in Refs. 9, 11, and 25. The detailing coefficients 
dj,k of the five-level DWT of the lidar signal are 
shown in Fig. 3a. The histograms of the distribution 
of dj,k are depicted in Fig. 3b. 

It is seem from Fig. 3 that the values of dj,k are 
mostly close to zero, and the variance of the detailing 
coefficients decreases with the increase of the level  
of decomposition of the function (dj0 → dj4) and the 
histogram  acquires  more  and  more  Gaussian  
form. 

The next stage of signal filtering is selection of the 
threshold and the rules for modifying the coefficients. 
Selection of the threshold ε is a significant problem 
in the noise suppression procedure. If the value of the 
threshold ε is low enough, then it leads to partial 
conservation of the noise component in the detailing 
coefficients and only insignificant increase of the 

signal-to-noise ratio. At the same time, large threshold 
values can cause the loss of the coefficients bearing 
information about the behavior of the profile of the 
optical atmospheric characteristics. The optimal value 
of ε is such that the highest possible signal-to-noise 
ratio is provided with the lowest distortion of the 
reconstructed signal. 

 

 
 

 
 

 
 

 
 

 

 à b c 

Fig. 3. Coefficients of DWT detailization of a test signal at the levels j0 – jm–4; dj
0
 – djm–4

 before the procedure of finding the 

threshold (a); histograms of the distribution of dj
0
 – djm–4

 (b); dj
0
 – djm–4

 after the threshold finding procedure (c). 
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The value of ε is estimated by certain criteria, 
which are quite numerous. The detailed information on 
them can be found in Refs. 17, 26, and 27.  The most 
widely used criteria implemented in the majority of 
computer mathematics are: 

(1) The “universal” Donoho–Johnston criterion: 

 2log( )j jnε = σ , 

where nj is the length of realization of the wavelet 
decomposition of the level j; σ is the variance of 
noise. The variance can be estimated using a rather 
smooth part of the initial signal. 

(2) The Stein risk assessment criterion28
 

minimizing the square loss function  

 ( )
2

*1
j j j

j

R d d
n

ε = −   

for the chosen model of noise, where Rj(ε) is the square 

loss function, d*
j  are detailing coefficients of the 

filtered signal, dj are the detailing coefficients of the 
signal hypothetically without an additive noise. 

(3) The minimax criterion. The filtered signal is 
approximated by the regression model, and ε is selected 
so that it realizes the minimum of the maximum root-
mean-square error obtained for worst function in this set. 

Modification of dj,k is performed by the two main 
rules16,17,20,26:  

 – hard thresholding:  

 
,

h ,
, ,

0, if
( )

, if

< ε=  ≥ ε

jj k
j k

jj k j k

d
T d
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and  
– soft thresholding:  

 s , , ,
( ) sign( )max(0, )= − εjj k j k j kT d d d . 

In the problems of noise suppression, it is better to 
use the method of soft thresholding, while in the 

problems of signal compression the rule of hard 

thresholding is used more often. Hard thresholding 
has two disadvantages that decrease its value for noise 
suppression. The first of them consists in that 

conservation of detailing coefficients exceeding some 
preset threshold value assumes conservation of noise 
present in them. Another disadvantage is connected 
with the appearance of parasitic harmonics in the 

resulting signal due to artificial introduction of lacunas 
formed from zeroed coefficients into the series.16  
The general equation for the procedure of threshold 

processing can be written in the following form: 

0

0, 0, , ,

1 1

( ) ( ) ( ) { ( )} ( ).jj k j k j k j k

k j j k

s t c k t T d k t

∞ ∞ ∞

= = =

= ϕ + ψ∑ ∑∑  (9) 

In Eq. (9) the threshold value in Ò can be taken 
common for the whole level of decomposition (global 
thresholding) or it is possible to use ε varying from 
one level to another (local thresholding) and depending 
on the number of the detailing coefficients (microlocal 
thresholding). Local versions of thresholding are 

preferred in noise suppression problems, because they 
have higher adaptability to the initial data as compared 
to the global threshold processing. Let us illustrate 
the peculiarities of different criteria of threshold 
processing using a test signal. 

Figure 4a depicts the profile of the reconstructed 
lidar echo signal corrected for range square after 
application of soft local thresholding to the detailing 
coefficients dj,k (Fig. 3a) by the criteria described 

above. The detailing coefficients dj,k after the 

thresholding procedure (Stein criterion) are depicted 
in Fig. 3c. 

It is seen from Fig. 4a that the use of the 
threshold ε calculated by the Stein criterion yields 
better results as compared to that obtained using the 
universal and minimax criteria. In this case, the noise 
in the lidar signal is suppressed without considerable 
distortion of the echo signal itself. In the range from 
3 to 4 km, the mean variation of the signal amplitude 
decreases from 190% in the initial data to 12% in the 
echo signal reconstructed after thresholding.  

Now let us illustrate the capability of noise 

suppression using a lidar echo signal due to Raman 
scattering by nitrogen molecules recorded in the photon 
counting mode. The noise component recorded by the 
photon counter consists of elastic scattering pulses 
coming through side lobes of the interference filter, 
pulses caused by the sky radiation, and dark pulses of 
the photocathode. Since the recorded signal was weak, 
the relative rms error already at the distance of 5 km 
achieved 40%, and at 10 km it exceeded 80%. Figure 4b 
shows the initial (curve 1) and reconstructed (curves 
2 and 3) lidar signals. 

The threshold processing of detailing coefficients 
of the lidar signal was performed by the rule of soft 
thresholding. The highest values of the threshold ε 
are obtained when using the estimate of the universal 
Donoho–Johnston criterion. In this case, it is seen 
from Fig. 4b (curve 2) that even in the case of 
application of the maximum values of ε parasitic 
harmonics are still present in the lidar signal. In this 
case, to completely remove the noise component, it is 
necessary to selectively increase the threshold for the 
levels jm, jm–1 (Fig. 4b, curve 3). 

 

Conclusions 
 
Applying the noise suppression procedure based 

on DWT to lidar signals, it is possible to achieve a 
rather deep suppression of noise with the signal 
structure kept unchanged. The main disadvantage is 
that calculation of the threshold ε by the existing 
criteria not always gives satisfactory results and it is 
necessary to vary the threshold for obtaining 

acceptable results. 
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Fig. 4. Signal and its reconstruction by the tenth-order symlet: test signal (a): initial signal (1), noisy signal (2); signal 
reconstructed using the thresholding procedure by the Stein (3), Donoho–Johnston (4), and minimax (5) criterion; Raman 
lidar signal (b): initial signal (1); reconstructed signal [“soft” thresholding with the estimate ε by the Donoho–Johnston 
criterion] (2); the same but ε for dj4 – dj3 is increased threefold (3). 
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