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An algorithm for reconstructing overcast fragments of aerospace images of the Earth's 

surface has been proposed.  It is based on a statistical approach to completing skipped 

components of the observation vector.  Some examples of reconstruction of video images 

have been given with a sample of images of preceding statistically homogeneous 

observations. 
 

Well known are the problems connected with the 
analysis of aerospace video images produced when some 
regions of the Earth's surface are shadowed by fog or 
cloud fragments of high optical density.  In this case, 
standard methods of image restoration using, for 
example, linear model describing the process of image 
transfer through dense scattering media and having the 
form of functional of convolution of the sought–after 
image with the point spread function give no way to 
obtain results of any value. 

At the same time, in mathematical statistics,1,2 the 
apparatus has been developed for reconstructing 
skipped components and formulating decision rules of 
statistical inference in observations of incomplete vector 
data.  Methods for reconstructing skipper values are 
based on the use of information coded in 
interconnections between the vector components of the 
data being observed, i.e., on the context of 
interrelations.  Therefore, for a solution of the 
aforementioned problem, the methods based on 
estimating the unknown parameters of statistical models 
are widely used.2 

Thus, for example, in order to reconstruct defect 
rows of raster images and to represent them efficiently, 
the filtration algorithms are used.5  The linear models 
of data description in bases of linearly independent 
functions (in the simplest case it may be the Fourier 
trigonometric basis used for restoration of archive 
photographs6) offer reconstructing properties. 

Although from the theoretical viewpoint the choice 
of a system of basis function is not crucial for a 
solution of the problem of reconstructing the skipped 
values, taking into account multidimensionality of 
video mages and instability of a solution of the system 
of linear equations whose dimensionality is determined 
by the number of functions of basis space, it becomes 
clear that progress in the problem solution is 
completely governed by the approximating properties of 
the basis chosen to describe the observed ensemble of 
images by relatively small number of basis functions. 

In general let us consider a problem of 
reconstruction of fragments of vector fields modeling 
multicomponent aerospace images.  We assume that the 

random vector field ξ(u)=(ξ1(u), ..., ξs(u))T of vector 

argument u = (u1,...,uν)T (where s and ν are the 
dimensionality of the vector function ξ(⋅) and of vector 
argument respectively, and T denotes transposition), 
centered about mathematical expectation μ(u), is 
represented in its domain of definition 

 

D = {u:  u a
i ≤ u 

i ≤ u b
i ,   i = 1, ..., ν} , 

 

where {ui

a
} and {ui

b
} are the boundaries of 

multidimensional square, by a set of N realizations 
ξ1(u), ..., ξN(u). 

With regard for restrictions imposed onto the field 
that were introduced in Refs. 3 and 4 and hold true for 
physically realizable fields, the orthonormal basis can 
be constructed in the space of process realizations, and 
the vector field can be represented as follows: 

 

ξ(u) = lim
k → $

 ∑
i = 1

k

 Xi Φi(u) , (1) 

 

where the limit is understood as convergence in the rms 
sense, {Φi(u)}

1

k are the non–random basis vector 

functions of vector argument.  The random coefficients 
{Xi}k

1
 are determined from conditions of minimum 

standard deviation 
 

εk
2 = M 

 

 

 

 

ξ(u) – ∑
i = 1

k

 X 

i Φi(u)
 

 

 

 

2

, (2) 

 

where M denotes the mathematical expectation 
operator, é⋅é denotes the Euclidean norm in the space of 
observations, and k is the number of chosen basis 
functions.  If the condition of orthonormality 
 

(Φi, Φj) = 
⌡⌠

D

 

 

Φi
T(u) Φj(u) d

ν

u = δij , (3) 

 

is imposed onto the basis functions {Φi(u)}
1

k,where 

δij(i, j = 1, ..., k) is the Kronecker symbol, 

d
ν

u = du1× ... ×du
ν

, and (., .) denotes the scalar 
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product, the representation coefficients {Xi}k
1
 that 

minimize Eq. (2) have the form 
 

X 

i = (ξ, Φi) = 
⌡⌠

D

 

 

ξT(u) Φi(u) d
ν

u ,   i = 1, ..., k . (4) 

 

Let us now assume that the next realization being 
observed has skipped  values in some connected subsets 
of the domain D.  These skipped values are due to 
shadowing effect of broken cloudiness.  Let us denote a 
set of all fragments of the domain D with indefinite 
realizations ξ(u) by E, where E ⊂ D. 

It should be noted that the rms error ε2

k
 (see 

Eq. (2)) of representation of this incomplete 
realization(using statistical terms of Ref. 1 and 2) is 
uncertain, since ξ(u) has unknown values in the domain 
E ⊂ D, whereas the basis functions {Φi(u)}k

1
 are defined 

everywhere over the domain D. 
The idea of reconstructing the skipped values is to 

complement realization ξ(u) in E in any way and to 
find the coefficients {Xi}k

1
 that minimize ε2

k
.  In 

connection with the aforesaid, let us complement the 
uncertain realizations ξ(u) in the domain E by a linear 
combination of some (thus far unknown) coefficients 
and basis functions {Φi(u)}k

1
.  It is natural to choose the 

coefficient of model (1) as unknown coefficients of 
these linear combinations.  In other words, we 
introduce a modified realization of the following form: 

 

ζ(u) = 

⎩⎪
⎨
⎪⎧

>

ξ(u),    u = D\E,

∑
j = 1

k

 X 
j Φj(u),    u ∈ E,  (5) 

and the complement ∑
j = 1

k

 X 
j Φj(u) of realization ξ(u) in 

a shadowed region does not increase the error ε
k

2, 

because it enters into both terms of the difference in 
Eq. (2). 

Let us now write down expression (4) for the 
representation coefficients dividing the domain D of 
integration into non–intersecting subdomain D\E, in 
which the modified observation ζ(u) has the form of 
true observation ξ(u), and subdomain E, where ζ(u) 

has the form of approximation ∑
j = 1

k

 X 
j Φj(u) of the field 

to be reconstructed in E.  Then expression Xi for 
coefficients (4) comprises the following components: 

 

X 

i=
⌡⌠

D\E

 

 

ξT(u) Φi(u)d
ν

u + 

⌡⌠

E

 
 

 

∑
j = 1

k

 X 
j 
Φj

T(u) Φi(u)d
ν

u. (6) 

 

Now we introduce the designations 
 

A = (aji) ,  aji = 
⌡
⌠

E

 

 

Φj
T(u)Φi(u)d

ν

u ,  (j, i = 1, ..., k) , 

b = (b1
 ... bk)T

 , bi = 
⌡
⌠

D\E

 

 

ξT(u) Φi(u)d
ν

u , (i=1, ..., k) , 

 

x = (X1 ... Xk)T , and I = diag(1, ..., 1) (the unit k×k 
matrix). 

Then from Eq. (6) we obtain the equation for 
unknown components of vector x, namely, 

 

(I – A)x = b . (7) 
 

Solving it by any method, we find the desired 
coefficients {Xi}k

1
.  These coefficients can be used for 

reconstruction of the realization ξ(u) being observed 
using either model (1) or modified realization of 
Eq. (5) only for shadowed regions. 

It should be noted that the basis {Φi(u)}k
1
 of 

orthonormal functions was taken arbitrarily, but the 
quality of approximation and the accuracy of 
reconstruction will be much higher for the Karhunen–

Loeve (KL) basis best suited for description a random 
process in the sense of the rms error, which ensures the 
minimum approximation error3,4 ε2

k
 as compared with 

other bases for fixed number k of basis functions. 
An algorithm for constructing such a basis and 

other adaptive bases from a sample of complete 
realizations ξ1(u), ..., ξN(u) was described in detail  
in Ref. 4.  Let us consider the problems of construction 
of such a basis from incomplete realizations 
ξ1(u), ..., ξN(u) in subdomains E1, ..., EN, 
respectively, of the domain D. 

At the first step, we choose a certain basis {Ψi(u)}k
1
 

and, after complement of realizations as described 
above, obtain a corrected set of images  
{ζ0

i
(u)}N

1
, in which the skipped realization 

ξ1(u), ..., ξN(u) of overcast fragments of video images 
E1, ..., EN have been complemented by modifications 
(5).  Having the reconstructed data of zero 
approximation {ζ0

i
(u)}N

1
 at hand, we can construct the 

KL basis of the first approximation {Φ1
i(u)}k

1
, and on 

this basis solve the problem of reconstruction of 
realizations of the basis sample for model (5). 

To eliminate degeneracy of matrix A in Eq. (7), 
which results in singular solutions, a moving regime of 
correction and construction of basis should be used, 
that is, when reconstructing the ith realization ξi(u), 
its modified analog should be excluded from the sample 
{ζ0

i
(u)}N

1
 and the KL basis of the first approximation 

{Φ1
i(u)}k

1
 should be constructed from the sample  

ζ0

1
(u), ..., ζ 

0

i$1
(u), ζ0

 i+1
(u), ..., ζ 0

N
(u) of size N – 1, 

where i = 1, ..., N. 
Having thus reconstructed each of {ξi(u)}N

1
 images 

and obtained their modifications {ζ1

i
(u)}, we construct 

the basis of the second approximation {Φ2

i
(u)}k

1
 from 

these data. 
Continuing this iterative process of construction of 

the next basis and reconstruction of realizations, we 
finally obtain at the mth step a set of basis functions 
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{Φm

i
(u)}k

1
, that can be used to correct ultimately the 

images {ξi(u)}N
1
, converting them in a set {ζm

i
(u)}N

1
 with 

the rms error of approximation 
 

εk
2(m) = 

1
N

 ∑
j = 1

N

  
 

 

 

 

ζ j
m(u) – ∑ X j

i
 Φ i

m(u) 
 

 

 

 

2
. 

 

An increment to the error at the next step of 
iteration serves as a criterion for termination of this 
process, and when εk(m – 1) – εk(m) ≤ ε, where ε is a 
preset parameter, the process of basis correction is 
terminated, and the obtained basis {Φm

i
(u)}k

1
 is used for 

reconstruction of newly recorded video images. 
In the rms sense convergence of the above–

described procedure of reconstruction of basis and 
realizations follows from convergence of monotonically 
decreasing finite sequences. 

It should be noted that to solve the problem of 
reconstruction of overcasted fragments of video images, 
for construction of adaptive bases4 it is natural to use 
the a priori information in the form of: 

– landscape maps of ground reflectivity that can 
be used to form model images of underlying surface of a 
chosen region, 

– statistics of microwave satellite images recorded 
with superhigh resolution, from which the optical 
images scaled to the images being observed can be 
synthesized, 

– samples of satellite images recorded at stations 
of routine survey at stages of preliminary observations 
with regard to seasonal stationarity of situation. 

Just the last case is presented as an example of 
operation of an algorithm.  We consider the simplified 
geometry of satellite observations without regard for 
cloud shadow, adjacency effect, sun elevation, and 
other interfering effects believing that their influence 
during the period of data accumulation does not disturb 
statistical homogeneity of observations. 

To illustrate the operation of the algorithm for 
reconstructing overcast fragments of video images, 
linearly independent realizations of images were 
formed.  As a basis for collecting image statistics, three 
satellite photographs taken from onboard the Resurs 
satellite were chosen in the following wavelength 
ranges: 0.5–0.6 μm (channel I), 0.6–0.7 μm 
(channel II), and 0.8–0.9 μm (channel III).  They were 
digitized by 256 brightness levels. 

Fragments of images of 256×256 pixels, denoted by 
ξ1(x, y), ξ2(x, y), and ξ3(x, y) for each wavelength 
range, served as initial information to collect statistics 
of images.  The next model image ξ(x, y) of the 
sampling ensemble was formed using a linear 
combination of three initial images, namely, 

 

ξ(x, y) = αξ1(x, y) + βξ2(x, y) + γξ3(x, y) , (9) 
 

where α, β, and γ were set by a random-number 
generator.  They obeyed uniform distribution and 
normalization condition α + β + γ = 1. 

To collect statistics of linearly independent 
images, we used the nonlinear transformation of 
equalization in Eq. (9).  The sample of 25 images was 
thus obtained, which modeled the results of satellite 
observations at a station of routine survey of the same 
region of the Earth's surface. 

As model clouds, plane fragments bounded by 
ellipses with random center positions, orientation, and 
lengths of axes were taken.  On average, 10.5% of total 
area was shadowed by these clouds.  As a criterion of 
image reconstruction quality, the following quadratic 
integral criterion 
 

ε =  

=
⌡⌠

D

 

 

[ξ(x, y)$ξ̂(x, y)]2dxdy/⌡⌠
D

 

 

[ξ(x, y)]2dxdy100% 

  (10) 
was chosen.  Here, ξ(x, y) is the initial sharp 

(complete) image, ξ̂(x, y) is the image reconstructed 
from ξ0(x, y), and ξ0(x, y) is the overcast image 
ξ(x, y). 

The first run of experiments used the KL basis 
constructed from a sample of 12 complete images.  
Approximating properties of the KL basis so obtained 
are characterized by the spectrum of the eigenvalues 
shown in Fig. 1a (curve 1), where λ determine the 
contribution from each basis function to the generalized 
variance.  Figure 1b (curve 1) shows the error of 
approximation of an ensemble of realization by a set of 
basis functions. 

 

 
 

FIG. 1.  Spectra of eigenvalues (a) and error of 
approximation in the KL basis (b). 
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FIG. 2.  Mathematical expectation (ME) and the first three functions of the KL basis (1, 2, and 3). 
 
 
 
 

 
 

FIG. 3. 
 
 
 
 

 
 

 
FIG. 4.
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The mathematical expectation estimated from the 
sample and the first three basis functions (in the form 
of images) of the KL basis obtained in this experiment 
are illustrated by Fig. 2a. 

Then the problem of reconstruction of ten images 
with cloud fragments was solved with the use of the 
basis so constructed.  Figure 3a illustrates four of these 
images with clouds, whereas Fig. 3b displays their 
reconstructed copies. 

In this case, the quality of image reconstruction to 
the initial sharp images, estimated by criterion (10), 
was equal to μ[ε] ± σ[ε] = (0.53 ± 0.13)%, where  
μ[ ] is the mathematical expectation, and σ[ ] is the 
standard deviation of the reconstruction error ε 
estimated from ten images. 

When criterion (10) is integrated only over the 
region occupied by clouds, the accuracy is equal to 
μ[ε] ± σ[ε] = (1.6 ± 0.45)%.  At the same time, the 
difference between the complete image and the image in 
the form of mathematical expectation displayed in 
Fig. 2a was μ[ε] ± σ[ε] = (11.8 ± 2.5)%.  If only 
overcast fragments of video images were replaced by 
their average values, then μ[ε]±σ[ε] = (12.1 ± 1.5)%. 

The second run of experiments corresponds to the 
case in which the KL basis was reconstructed from 
images with clouds.  At the first step of iteration 
process of  basis construction, the overcast fragments of 
video images were replaced by the values of brightness 
averaged over unshadowed fragments of corresponding 
images. 

The spectrum of eigenvalues of the basis of the 
first approximation is shown in Fig. 1a (curve 2), 
whereas Fig. 1b (curve 2) shows the quality of 
approximation of observation ensemble in this basis.  
The quality of reconstruction of ten images in this case 
was μ[ε] ± σ[ε] = (2.1±0.6)%, and upon integrating 
Eq. (10) over the cloud area, it was 
μ[ε] ± σ[ε] = (6.5 ± 2.0)%. 

Figure 2b shows the estimated mathematical 
expectation and the first three basis functions 
corresponding to this case.  Figures 4a and b show four 
images with clouds and their reconstructed copies, 
respectively.  Then in the moving regime of 
 

reconstruction, when the next basis image is 
reconstructed in the first approximation basis, all basis 
images were reconstructed. 

Once the realizations had been reconstructed, the 
KL basis of the second approximation was constructed.  
The spectrum of eigenvalues of this basis is shown in 
Fig. 1a (curve 3), whereas the approximation error in 
this basis is shown in Fig. 1b (curve 3).  The behavior 
of the curves is indicative of the increasing role of the 
first basis functions and eigenvalues.  The quality of 
ten images being reconstructed in  this basis has 
increased, and μ[ε]±σ[ε] = (0.96 ± 0.36)%. In this case, 
the modified quality criterion mentioned above was 
μ[ε] ± σ[ε] = (2.97 ± 1.1)%.  Preliminary experiments 
on reconstruction of video images demonstrate high 
efficiency of the proposed method. 
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