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We propose, when tackling the problem of aerosol transfer, within an 

arbitrary time interval, to replace it by a problem of optimal control. The cost 

functional is chosen, for that case as deviation of the initial solution from the 

solution of a problem with known diffusion. In so doing, we consider a 

meteorological model that is based on the concept of artificial compressibility. The 

results obtained from experiments qualitatively well agree with the theory  and  

data of observations  available. 

 

1. INTRODUCTION 

 

Aerosol transfer in the atmosphere is traditionally 
described by a convection-diffusion equation. 
Simulating aerosol transfer under conditions of 
dominating convection requires for use of numerical 
procedures that provide for suppressing the oscillations 
that may appear in calculations of the aerosol wave 
near its front.  

Here we consider the approach that enables one, 
within the same frameworks, to suppress the non-
monotonic features and assimilate an additional 
information (if any) about a solution to the transfer 
equations. At the same time, we consider in this paper 
only the variational aspect  of the problem on making 
the solution monotonic. 

The idea of applying the apparatus of adjoint 
equations to meteorological problems has first been 
proposed by Marchuk.1  In the context of variation 
assimilation of the data, the adjoint equations can be 
used to calculate gradient of the cost functional with 
respect to the initial data of the model. This gradient is 
then used to make the œdescent steps,B in the space of 
the initial data, and the iteration process is repeated 
until the initial data are approximated quite 
satisfactorily to minimize the cost functional. The use 
of the adjoint equations in such an approach has been 
proposed by Penenko.2  Since then many authors have 
been using this approach in the context of data 
assimilation (see, for instance, Ref. 3). 

Knowledge of the spatial and time behaviors of 
the meteorological quantities is very important when 
solving problems of the aerosol transfer and 
transformations in the atmosphere. Large variations of 
these fields are difficult to be determined only from  
measurements, in the zones of complicated processes.  
 

Meteorological models have  become an important 
tool for extracting that type of hard-to-obtain 
information.4 

Most of the modern non-hydrostatic models use 
the so-called œinflexibleB approximation in which sound 
waves are filtered using a modified equation of 
discontinuity. As a result, the pressure can not already 
be determined explicitly, while being obtained using a 
complicated differential equation. As a consequence, 
one must solve this equation at every time step to 
modify the pressure field. So, it is much more difficult 
to numerically treat an inflexible system as compared 
with the treatment of a system of equations that is 
obtained for the hydrostatic case.9  In recent years, the 
development of numerical methods has made it possible 
to create non-hydrostatic models10$12  that do not  filter 
sound waves. 

It is evident that a numerical model that could 
provide for a detailed description of atmospheric 
processes must not only provide for obtaining exact 
solutions of the relevant mathematical equations. It 
also must involve a realistic representation of the 
Earth’s surface. In this connection, coordinate systems 
that trace the surface are most widely spread in use. 
After making relevant substitution of variables, the 
domain where the calculations  are to be done becomes 
simple and can easily be discretized. However, thus 
transformed equations are more complicated. Generally 
speaking, the transforming functions must be 
sufficiently smooth, that means that one have restrict 
oneself to only a smooth idealization of a real surface.9 

To obtain hydrostatic fields that make up the 
backbasic for aerosol spread, we consider in this paper a 
three-dimensional meteorological model that is based on 
the method of artificial compressibility (earlier versions 
are presented in Refs. 6 and 7). The method  
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of artificial compressibility has been proposed by 
Yanenko13 and Chorin14 and then successfully applied 
to solving different problems in fluid dynamics. Using 
this method one can considerably simplify in a non-
hydrostatic model the process of solving the equation 
for pressure in the regions  of complicated scenarios. 
The finite-difference and finite-element variants of the 
model are used for a surface with small and large 
spatial gradients, respectively. 

 

2. AEROSOL TRANSFER AND DIFFUSION 

 

The convection-diffusion equation for the transfer 
of a substance in the atmosphere has the following 
form4: 

∂c

∂t
 = ∇ (D ∇c $ vc) $ λc + q. (1) 

Here c(x, t) is the concentration of the substance; 
D(x, t) is the variance tensor; v(x, t) is the wind 
velocity; λ(x, t) describes chemical reactions; q(x, t) is 
the term of a source or a sink, x ∈ Rd, d = 1, 2, 3. 

Suppose that the problem (1) has the following 
spatial form: 

dϕ

dt
 = H(ϕ), (2) 

where H is some regular operator in the space. For 
instance, one can use central differences to obtain high 
spatial approximation. If the convection dominates over 
the diffusion, use of central differences lead to 
appearance of strong oscillations in the calculated 
numerical solution. 

Let there be some supplementary information on 
the behavior of the physical solution in the form of 

œobservationsB ϕ̂(ti), and ϕ̂(t1),...,ϕ̂(tn) let also be 
found at times t1 <...< tn. We seek a solution ϕ(t) that 
minimizes the functional 

J[ϕ(t)] = ∑
i=1

n

 [ϕ(ti) $ ϕ̂(ti), ϕ(ti) $ ϕ̂(ti)] + 

+ ∑
i=1

n

 [∇(ϕ(ti) $ ϕ̂(ti)), ∇(ϕ(ti) $ ϕ̂(ti))], 

where [,] is the scalar product.  
Let us consider then the linearized equation for 

perturbations 

d
dt

 δϕ = A(t) δϕ (3) 

with the initial condition δϕ(t1) and the adjoint 
differential equation 

d
dt

 δ*ϕ = A*(t) δ*ϕ. (4) 

 

Here the operator A*(t) is the complex conjugate to A. 
One cycle of calculations of the functional 

gradient with respect to the initial field contains:  
(1) one calculation of the direct model; (2) one 
calculation of the adjoint model in the direction 
opposite to  that for determining the gradient. 

Having obtained the gradient, one can use a 
descent algorithm to obtain a correction to the initial 
conditions. The approximations obtained from the 
following series 

c = C0 + ∑
k=1

∞

 Ck/(Re)k, (5) 

where Re is Reynolds number in our problem, are used 
as the œobservationsB. This series leads to a sequence of 
hyperbolic equations that can be solved, for instance, 
by the method of characteristic curves. 

The idea of using this series in a problem  
of optimal control was proposed in Ref. 5, though  
in actual calculations a certain variant of the  
front fitting was used as a sort of restriction.  
In this paper we generalize this method to develop a 
unified approach that could be applicable to  
finite-difference, finite-element, or spectral 
approximations. 

Let us consider the results calculated for the case 
of a passive admixture transfer over a mountain ridge, 
as an example. The shape and dimensions of the ridge, 
as well as the triangulation of the calculation domain  
is shown in Fig. 1. 

 

 
 

FIG. 1. Triangulation of the domain. 

 
The domain has total height of 500 m, horizontal 

extension of 10 km, and the height of the hill of 300 m. 
The calculation grid consists of 296 triangular elements; 
horizontal and vertical dimensions of the grid cell are 
500 and 50 m, respectively. 

Figure 2 presents the field of the admixture 
concentration at a horizontal wind speed of 10 m/s and 
the vertical one of 3 m/s. The horizontal and vertical 
coefficients of diffusion are 100 and 10 m/s, 
respectively. The source of the emission with the 
normalized intensity of 1 is situated at the left 
boundary at a height of 100 m. 
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FIG. 2. The field of the admixture concentration. 

 
3. THE METEOROLOGICAL MODEL 

 
The basic equations of motion, heat, humidity, 

and discontinuity, which are presented here in a three-
dimensional form are as follows: 

dU

dt
 + 

∂P

∂x
 + 

∂P

∂z
 = f1 (V $ Vg) $ f2 W + Ru, 

dV

dt
 + 

∂P

∂y
 + 

∂P

∂z
 = $ f1 (U $ Ug) + Rv, 

dW

dt
 + 

∂P

∂z
 + 

gP

C
2
s

 = f2 U + g 
ρ$ θ′

θ
$

 + Rw, 

dθ

dt
 = Rθ, 

ds

dt
 = Rs, 

1

C
2
s

 
∂P

∂t
 + 

∂U

∂x
 + 

∂V

∂y
 + 

∂W

∂z
 = 

∂

∂t
 
⎝
⎜
⎛

⎠
⎟
⎞

 
ρ$ θ′

θ
$

  . 

 

Here U = $ρu, V = $ρv, W = $ρw, P = p′, where p′, θ′ 

are the deviations of pressure $p and potential 

temperature 
$
θ from the basic state; s is the specific 

humidity; Cs is the speed of sound; ug, vg are 
geostrophic wind components representing the synoptic 
part of the pressure; f1, f2 are Coriolis parameters; g is 
the  acceleration of gravity. 

For an arbitrary function ϕ 

dϕ

dt
 = 

∂ϕ

∂t
 + 

∂uϕ

∂x
 + 

∂vϕ

∂y
 + 

∂wϕ

∂z
 . 

The terms Ru, Rv, Rw, Rθ, Rs describe the processes on 

a sub-grid scale. To parameterize the turbulence, we use 
a simple scheme based on calculations of the Blacadar 
mixing path.8 Usual logarithmic profiles of wind 
between the surface and first layer of the atmosphere 
are being estimated. We take 0.1 m for the roughness 
length. 

For the upper boundary, we take the condition 

w = 0, u = ug,  v = vg,  θ = θt, 

where θt is the constant value that is set by the basic 
state. 
 

 

For the lower boundary, we take that 

w = 0, θ = θs(x, y)  

that means that the same value as of the basic state at 
the same level. Turbulent fluxes through the surface 
layer are determined using Monin-Obukhov similarity 
theory.8 

In this paper, side boundaries are defined from the 
condition that normal derivatives equal zero for all the 
calculated fields. 

Both the finite-difference and finite-element 
variants of the model essentially use the method of 
artificial compressibility for equations of the Navier-
Stokes type.13$14  The finite difference variant of 
calculations is described in Ref. 6. As to the finite-
element case, the spatial discretizing of the initial 
equations is based on the method of weighed residuals. 
The dependent variables are represented in the form 

P = ∑
i=1

m

 βi(x
$
) Pi(t), 

ϕ = ∑
i=1

n

 αi(x
$
) ϕi(t), 

where ϕ can be U, V, W, θ, or s. Here m points in a 
discrete domain are for P and n points for other 

variables. The approximating functions αi(x
$
) are piece-

wise continuous bilinear polynomials (for the 2D 
variant of the model considered here), the functions 

βi(x
$
) for P are piece-wise constant. 
We consider here the Arakawa grid, in which P is 

determined at the center of each element. After 
substitution into the initial equations, multiplying each 
equation by the corresponding weighting function (βi 
for the equation of discontinuity and αi for other 
equations), and integrating by parts, we obtain a non-
linear system of ordinary differential equations of the 
first order. The diffusion terms are realized by 2×2 
Gaussian quadrature formulas, all the other integrals 
are represented by single-point formulas. 

Discretizing in time is performed in a standard 
way into the transfer and adaptation stages.6  At the 
first stage, the schemes of Krank-Nicholson type are 
being applied. At the adaptation stage, the equation for 
pressure is realized by the direct method combined with 
the time iterations.6 

Let us present the results of the finite-difference 
experiment for a meteorological flow over an isolated hill. 
The hill of a 500 m height is situated at the center of a 
10×10 km area. The top of the area is at 5 km. The 
geostrophic flow is spread from west to east at a speed of 
5 m/s. The standard atmospheric stratification with the 
gradient of 3.5 K/km is taken as the basic state. The 
absorbing layer is situated above 1500 m. The calculation 
grid consists of 31×31×16 points with the horizontal size 
of 333 m and variable vertical size. 



976   Atmos. Oceanic Opt.  /October  1998/  Vol. 11,  No. 10 M.S. Yudin and K. Wilderotter 
 

 
 

FIG. 3. Potential temperature at the level of 20 m. 

 

 
 

FIG. 4. Potential temperature at the level of 400 m. 
 

Figures 3 and 4 demonstrate horizontal sections of 
the potential temperature at the levels of 20 and  
 

 

400 m respectively. The flow tends to turn left at low 
levels. At the same time, the flow is almost symmetric 
at the upper levels. The results of these model 
experiments qualitatively agree with the theory15  and 
data of observations  available. 
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