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This paper presents an analytical technique for reconstructing the coefficients 

of phase expansion in its gradient. The geometry of a receiving aperture and the 

expansion basis may be arbitrary. 
 

The adaptive optics methods are used to increase 
the efficiency of laser systems operating under 
conditions of atmospheric distortions. Measurements of 
the wavefront distortions and their subsequent 
correction make it possible to decrease essentially jitter, 
scintillation, and spreading of optical beams and 
images. To describe the phase distortions of light fields 
on atmospheric paths, their expansion in a system of 
basis functions defined as Fourier series 

 

SN(x, y) = ∑
k = 1

N

 ak Ψk(x, y) (1) 

 

is commonly used, where the expansion functions are 
the orthonormalized polynomials whose form is 
determined by the geometry of a receiving aperture. In 
particular, they are Zernike polynomials for round 
aperture, ei(xn+ym) or Hermite–Chebyshev polynomials 
for square aperture, etc. 

The vector of the coefficients A=(a1, a2, a3, ..., ak)T 
of Eq. (1) is calculated from the condition of minimum 
of the functional 

 

min ρ(S, SN) = ⌡⌠
D

 
 (S $ SN)2 dρ , (2) 

 

where D is the area of a receiving aperture. 
Minimization of functional (2) is equivalent to solving 
the matrix equation 

 

ΦA = B , (3) 
 

where 
 

B = {<S, Ψ1>, <S, Ψ2>, ...}T , (4) 
 

Ψi is the expansion basis, Φ = é<Ψi, Ψj>é is the 

quadratic matrix, and <f, g> = ⌡⌠
 

 

 fg d2ρ is the scalar 

product. 
Due to specific character of square–law detection, 

sensors of interference and Hartmann types are usually 
used as wavefront sensors in phase–conjugated  
 

adaptive optical systems. They measure wavefront tilts 
(gradients) in a discrete set of points. Therefore, we 
know the phase gradient 

 

∇S(x, y) = ∑
k = 1

N

 ak ∇ Ψk(x, y) . (5) 

 

In this case, the following matrix equation1–4 is 
applied: 

 

FA = C , (6) 
 

where F = é<∇Ψi, ∇Ψj>é is the quadratic matrix, and 
C = é<∇S, ∇Ψj>é is the row matrix. We note that the 
matrix F contains experimentally measured phase 
gradients, and the system may be ill–conditioned, i.e., 
its determinant may be close to zero. In this case, it is 
difficult to reconstruct the phase expansion coefficients. 
I offer an analytical approach to the determination of 
the phase expansion coefficients when the phase 
gradient is known. 

First of all, let us find the relation between the 

phase and its gradient. The Borel–Pompey formula5 is 
valid for the complex function f(z) = S(x, y) + 
+ iV(x, y): 

 

1
2πi ⌡⌠

Γ

 
 
f(z) dz

t $ z
 – 

1
π ⌡⌠

 
 ⌡⌠

 
 
∂f
∂z* 

dξ dη
t $ z

 =
⎩
⎨
⎧

>

0 , z ∈ D1,
f(z), z ∈ D,

 (7) 

 

where x, y ∈ D
$

, D1 = R2/D
$

, and R2 is a two–

dimensional real Euclidean space. 
Let D be the area of an aperture, and Γ be its 

boundary. Assuming that the phase is equal to zero at 
the boundary, we may rewrite Eq. (7) as 

 

– 
1
π ⌡⌠

 
 ⌡⌠

 
 
∂f
∂z* 

dξ dη
t $ z

 = f(z) , (8) 

 

where ∂/∂z* = (1/2) [∂/∂x] + i [∂/∂y] . By virtue of 
linear independence between real and imaginary parts, 
we may rewrite Eq. (8) retaining only its real part: 



842 Atmos. Oceanic Opt. /October 1995/ Vol. 8, No. 10 Yu.N. Isaev 
 

 

S(x, y) = – 
1
π Re 

⌡
⌠

 

 

⌡
⌠

 

 ∂f
∂z* 

dξ dη
t $ z

 = 

 

= – 

1
2π 

⌡
⌠

 

 

⌡
⌠

 

 

D

∂S
∂ξ  (x $ ξ) + 

∂S
∂η (y $ η)

(x $ ξ)2 + (y $ η)
 dξ dη = 

= <∇S, 1/z>, (9) 
 

where 1/z is the fundamental solution of the Cauchy–
Riemann operator. Since the elements of the vector A 
are defined as 

 

ak = <Ψk, S>, (10) 
 

substituting Eq. (9) into Eq. (10), we obtain 
 

ak = <Ψk, <∇S, 1/z >> = <∇S, <Ψk, 1/z >> = <∇S, Gk> , 
  (11) 
 

where Gk are the vector polynomials defined by the 

relation: 
 

Gk = <Ψk, 1/z > , (12) 
 

or in expanded form 
 
Gk = {Gkx, Gky}, 

Gkx(x0, y0) = 
⌡
⌠

 

 

⌡
⌠

 

 

D

Ψk(x, y)(x $ x0)
(x $x0)2 + (y $ y0)2 dx dy , (13) 

 

Gky(x0, y0) = 
⌡
⌠

 

 

⌡
⌠

 

 

D

Ψk(x, y)(y $ y0)
(x $x0)2 + (y $ y0)2 dx dy . (14) 

 
We note that all polynomials are orthogonal: 

<Gn, Gm> = δnm, which makes the determination of the 
phase expansion coefficients much simpler. 
Therefore, in order to determine the coefficients of 
phase expansion (1) on the basis Ψk in its gradient, it 
is necessary to expand the phase gradient ∇S into a 
series in vector polynomials Gk being the convolution  
 

of the basis functions with the Cauchy–Riemann 
fundamental solution. The domain of integration of the 
convolution should be determined by the aperture 
geometry. 

The polynomials Gk obtained in the Cartesian 

coordinate system are presented in Refs. 6 and 7 for 
round aperture, when the phase was expanded in a 
system of the Zernike polynomials. The same 
polynomials were obtained in Ref. 8 for a particular 
case in the polar coordinate system by solving the 
boundary–value problem for round aperture. 

Thus, the analytical technique for determining the 
phase expansion coefficients from phase gradients on 
arbitrary expansion basis for arbitrary aperture 
geometry has been proposed. 
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