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The problem of optimal image filtering is solved in accordance with the criterion 
of maximum resolution in the one–dimensional version. It is shown that the obtained 
solution can be employed to improve the images of the observed targets in an optical 
system operating in a turbulent atmosphere under conditions of random refraction. 

 
INTRODUCTION 

 
It is well known1–3 that the quality of optical systems, 

as well as of any other image constructing systems like TV, 
x–ray, and photographic systems is characterized by its 
resolution according to Foucault. The problems of analyzing 
the implicit capabilities of the IS's, which would make it 
possible to improve (adjust or control) their resolutions, are 
the permanent investigation subject in the USSR4–6 and 
abroad.7–9 Meanwhile, as far as we know, from the 
literature there are no data on the theoretically maximum 
attainable values of the resolution for the IS of one or 
another type and on the choice of the operational 
characteristics of the IS, which would correspond to that 
theoretical maximum. Since in the general form this 
problem is extremely complicated, in this paper we present 
its solution only in a one–dimensional version which is 
applicable to the linear IS's with the following model 
structure: initial image, distorting filter, additive noise, 
correcting filter, and reconstructed image.  
 

MATHEMATICAL FORMULATION OF THE 

PROBLEM 

 
Let the resolution of an image constructing system be 

defined as follows:10 
 

R = μ {ν
−
 ≥ 0⏐k0G(ν) ≥ K(ν), G(ν) > 0, 0 ≤ ν ≤ ν

−
} , 

 

where μ is the Lebesgue measure, ν and ǹ are the spatial 
frequencies, k0 is the initial contrast (contrast of resolvable 

elements at the input of the IS), G is the resultant 
modulation transfer function (MTF) of the IS, and K is the 
threshold contrast.  

In what follows, by analogy to Ref. 11 we will assume 
that the threshold contrast is solely determined by the noise 
at the IS output, i.e.,  

 

K(ν) ≡ K = Mthrδ , 
 

where Mthr is the threshold signal–to–noise ratio and δ is 
the relative rms value of the noise at the IS output.  

After simple transformations the problem under 
consideration is reduced to maximizing of the functional  

 

R(Φ) = μ {ν
−
 ≥ 0⏐H(ν)Φ(ν) ≥ c⌡⌠

–∞

+∞

S(ν)Φ(ν) dν, 

H(ν)Φ(ν) > 0, 0 ≤ ν ≤ ν
−
} (1) 

 

over all Φ under conditions that 1) c ≥ 0, 2) H, Φ, and S be 
nonnegative even functions over the entire axis, 3) S and H be 
continuous at the zeroth point, 4) S(0) ≥ S(ν), 5) S(0) < ∞, 

and 6) H(0) = Φ(0) = 1. Here H = ⏐h~⏐2 and Φ = ⏐ϕ~⏐2 are 
the squared MTF's of the distorting and correcting filters, 

respectively; h~ and ϕ~ denote the optical transfer function 
(OTF) of the distorting and correcting filters, respectively; 

c = [Mthr/(k0B)]2, B is the brightness of the background of 

the input image, and S is the spectral density of the noise.  
Prior to solving the problem itself let us introduce a 

number of additional designations and remarks:  
 

P
Q = {ν

−
 ≥ 0⏐Q(ν) > 0, 0 ≤ ν ≤ ν

−
}, and A

Ф
 is the set in braces 

of the right side of Eq. (1), D = {Φ⏐c
⌡
⌠

–∞

+∞

 

 
S(ν) Φ(ν) dν ≤ 1} , 

η(ν
−
) = 2c ⌡⌠

0

ν

S(ν)
H(ν) dν,  B

−
 = {ν

−
 ≥ 0⏐η(ν

−
) ≤ 1}, and ∅ is the empty set. 

It is obvious that the sets A
Φ
 and P

Q
 are convex for ∀Φ 

and Q and it follows from conditions 1 and 2 that the set B
−
 is 

also convex. For this reason, ∀A ∈ {B
−
, P

Q
, A

Φ
 | Q, Φ are 

arbitrary} is convex (if not empty, then it consists of 
nonnegative numbers), and in accordance with Refs. 12 and 13 
it can only be the set 

 
A = [0, p] or A = [0, q) , 
 
where p and q are some nonnegative numbers (possibly 
infinite). If A = ∅ ⇒ q = 0. If A ≠ ∅, it is obvious that  
 
A = [0, a] or A = [0, a), a = μ(A) = sup(A). 
 

From the foregoing and conditions 3 and 6 it follows 
that P

H ≠ ∅ and α = μ(P
H
) = sup(P

H
) > 0. One can easily see 

that R(Φ) ≤ μ(P
HΦ

) ≤ μ(P
H
) and μ(P

Φ
). From conditions 1–6 

it follows that D ≠ ∅, and from conditions 3, 5, and 6 one has 
that S/H is continuous within some closed vicinity of zero 
W(0) and η is continuous on W(0) and hence η(0) = 0 and  

B
−
 ≠ ∅, and according to Ref. 14 ∃! 0 < ν

−
 ∈ W(0) is such that 

η(ν
−
) ≤ 1 that results in β = μ(B

−
) = sup(B

−
) > 0.  

 
Let us proceed to solving the above–stated problem.  
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Case 1. S = 0 almost everywhere. Then SΦ = 0 almost 
everywhere for ∀Φ. Therefore, as it follows from the well–
known theorem12  
 

⌡⌠
–∞

+∞

S(ν)Φ(ν) dν = 0 for ∀Φ ⇒ R(Φ) = μ(P
HΦ

). 

 
From this we obtain that Rmax = α and it is reached on ∀Φ, 

for which μ(P
Φ
) ≥ α, in other words, on such an ∀Φ, which 

is positive on the set (–α, α) and which is arbitrary outside 
it, and Φ(0) = 1.  

Case 2. S ≠ 0 almost everywhere.  

Case 2.1. ⌡⌠
–∞

+∞

S(ν)Φ(ν) dν = 0. In this case from 

condition 2 and in accordance with the well–known 
theorem15 SΦ = 0 almost everywhere. Since S ≠ 0 almost 
everywhere S(0) > 0 according to conditions 2 and 4. And 
from condition 3 it follows that there exists a vicinity Ω(0) 
around zero point where S > 0. Hence we obtain that Φ = 0 
almost everywhere on Ω(0) ⇒ μ(P

Φ
) = 0 ⇒ R(Φ) = 0.  

Case 2.2. ⌡⌠
–∞

+∞

S(ν)Φ(ν)dν > 0. From condition 6 it 

follows that if c⌡⌠
–∞

+∞

S(ν)Φ(ν)dν > 1 then R(Φ) = 0. Thus in 

the case 2 the maximum of functional (1) can be reached 
only on Φ ∈ D. From the condition 6 and taking into 
account a property of the set D it follows that A

Φ
 ≠ ∅ for 

∀Φ ∈ D ⇒ R(Φ) = μ(A
Φ
) = sup(A

Φ
).  

Let now Φ ∈ D and ν
−
 ∈ A

Φ
 be chosen arbitrarily. For  

∀ν
−
 ∈ A in accordance with the definition of this set the 

inequality 
 

H(ν)Φ(ν) ≥ c⌡⌠
–∞

+∞

S(ν)Φ(ν) dν, 0 ≤ ν ≤ ν
−
 (2) 

 
is valid. From the monotony of a definite integral and from 
condition 2, applying inequality (2) for the second time, we 
obtain  
 

⌡⌠
–∞

+∞

S(ν)Φ(ν) dν ≥ 2c ⌡⌠
0

ν
−

S(ν)Φ(ν) dν ≥ η(ν
−
) ⌡⌠

–∞

+∞

S(ν)Φ(ν) dν. 

 
From this and the above said taking condition 1 into 

account it follows that for all ∀ν
−
 ∈ A

Ф
 and ∀Φ ∈ D the 

inequality η(ν) ≤ 1 ⇒ A
Φ
 ⊂ B

−
 holds, and for 

∀Φ ∈ D ⇒ R(Φ) ≤ β, while for ∀F ∈ D ⇒ R
max ≤ β.  

On the other hand, we have already obtained that 
Rmax ≤ α. Thus, finally we have that Rmax ≤ γ = min (α, β). Let 

us now show that Rmax = γ and it is reached on the function  

 

Φ
opt(ν) = 

⎩
⎨
⎧

 

1/H(ν), ⏐ν⏐ < γ ;

0  , ⏐ν⏐ ≥ γ .
 (3) 

  
To this end, obviously, it is quite sufficient to show that 
 

2c ⌡⌠
0

γ

S(ν)Φopt(ν) dν ≤ 1 . 

 
From Eq. (3) and conditions 1, 2, 4, and 6 it follows that 
the function  
 

ξ (ν
−
) = 2c (⌡⌠

0

ν
−

S(ν) Φopt(ν) dν 

 
is continuous everywhere, and that it monotonically 
increases and coincides with the function η, at least, on the 

set [0, γ) ⊂ B
−
. For this reason,  

 
sup ξ(ν)

0<ν<γ

 = sup η(ν)
0<ν<γ

 ≤ sup η(ν)
ν∈B

−
 ≤ 1 . (4) 

 
From the fact that the quantity ξ is continuous everywhere 
and is monotonically increasing it follows that12  
 
sup ξ(ν)

0<ν<γ

 = ξ(γ) . (5) 

 
Therefore, combining Eqs. (4) and (5) we will obtain the 
sought–after result.  
 

SOME RESULTS OBTAINED FROM  

THE PROBLEM SOLUTION  

 

Thus, under sufficiently general restrictions the 
theoretically achievable maximum resolution of the linear IS's is 

 
Rmax = min(α, β) (6) 

 
and it is reached at 
 

⏐ϕ~
opt(ν)⏐ = 

⎩⎪
⎨
⎪⎧

 

1

⏐h
~
(ν)⏐

 , ⏐ν⏐ < Rmax ;

0  , ⏐ν⏐ ≥ Rmax ,

 (7) 

 
where  
 

α = sup{ ν
−
 ≥ 0⏐⏐h

~
(ν)⏐ > 0, 0 ≤ ν ≤ ν

−
 } ; 

 

β = sup

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

ν
−
 ≥ 0⏐2c 

⌡
⌠

0

ν
−

S(ν)

⏐h
~
(ν)⏐2

 dν ≤ 1  . (8) 

 

Note that the quantity α in the case of a continuous 

optical transfer function h~ is its first positive zero, and  
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therefore the "sup" sign in the given relations for α and β 
can be replaced by "μ".  

 
DISCUSSION OF THE OBTAINED RESULTS 

 
Expression (7) for the OTF of an optimal, with respect 

to the resolution, correcting filter coincides with that for 
the OTF of an inversion filter17 which is used to reconstruct 
optical images. The coincidence is correct to the parameter 
Rmax. The difference is that in this paper we have chosen 

Rmax from the condition of maximum resolution in the 

Foucault sense and then it is analytically calculated, based 
on the use of formulas (6) and (8), while in Ref. 17 this 
parameter is chosen from the condition of minimum rms 
error for the initial–image reconstruction and it is defined 
analytically as a solution of the equation17 

 

⏐h~(ν)⏐2 = 
S(ν)
S0(ν) (9) 

 

with respect to ν, where S0 is the spectral density of the initial 

image. 
One can readily see that in Eqs. (6) and (8), on the 

one hand, and in Eq. (9), on the other, different a priori 
information about the initial image is used. In the first case 
the contrast k

0 and the background brightness B are used, 

while in the second case – only the spectral density S0 of 

the initial image. 
The results which have been obtained in this paper, 

i.e., formulas (6) and (8), can be applied, in particular, to 
signal filtering in scanning optical systems operating in the 
turbulent atmosphere under conditions of random refraction, 
if, in accordance with Refs. 1, 16, and 18, it is assumed that  
 

Ψ
~

opt(ω) = ϕ~opt(ω/ν) 
 

is the transfer function of a temporal filter, v is the velocity 
of an image scanning (for airborne lidars this is the velocity 
of flight), ω is the temporal frequency, and  
 

h
~
 = L(ν, 0) , 

 

where L(ν
x
, ν

y
) is the product of the OTF's of the turbulent 

atmosphere and of the receiving aperture of the optical system, 
ν
x
 and ν

y
 are the spatial frequencies along the image–scanning 

direction (aircraft flight direction) and along the direction 
which is perpendicular to that one, respectively;  
 
 

S(ν) = ⌡⌠
–∞

∞

F(ν, ν
y
) dνy , 

 
where F is the spectral density of fluctuation of the 
refractive index of the medium (air), which represents a 
quantitative model of the random refraction.  
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