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For the simplest climatic model with two temperatures the steady states in the 
finite part of the plane are found. It is shown that at different parametrizations of the 
outgoing infrared radiation the position and the character of steady states can be 
changed down to their complete disappearance. 

 
Simple energy–balance models are convenient for 

discussion of general climatic regularities and at the same 
time they underlie the detailed multidimensional models 
describing global climatic changes. In their first part they 
seem to be an interesting object for the qualitative analysis. 
Thus obtained information may be useful for studies based 
on the global models. 

In the present note the steady states in the finite part 
of the plane are found for the simplest model of the 
radiative planetary regime with two temperatures. It is 
shown that at different parameterizations of outgoing 
radiation the position and the character of the steady states 
can be drastically changed down to their complete 
disappearance. 

Let us consider the simplest climatic model1 including 
the uniform horizontal surface at temperature T

s
 and the 

uniform air layer at temperature T
a
 over the surface. The 

heat balance is formed as a result of a heat exchange 
through radiation alone. Variations of the surface and air 
temperatures are determined by the equations 
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The dot denotes the differentiation over time, D
t
 is the 

atmospheric transmission function for the long–wave 
radiation, D

s
 is the atmospheric transmission function for 

the short–wave solar radiation, and F↓ is the balance of the 
solar energy at the upper boundary of the atmosphere. 
Figure 1 explains the origin of different terms in Eq. (1). 
Let us introduce the following designations 
 

T
s
= x , T

a
 = y , σ(1 – D

t
) = a , F↓D

s
 = b , F↓(1 – D

s
) = c. (2) 

 

Using these designations one can write a system of 
equations (1) in the form 
 

⎩
⎨
⎧x⋅  = ay4 – σx4 + b = P , 

y⋅  = ax4 – 2ay4 + c = Q .
 (3) 

 

A system of equations (3) is the autonomous system of two 
nonlinear differential equations. To study it we use the 
methods of qualitative theory of differential equations.2,3 
The steady state coordinates in the finite part of the plane 
are found from the equations 
 

P = 0 , and Q = 0 (4) 
 

and are equal to 
 

x
0
 = ± ((2b + c)/(2σ – a))1/4 , 

y
0
 = ± ((σc + ab)/a(2σ – a))1/4 . (5) 

 

Standard analysis of the trajectory behaviors in the vicinity 
of these steady states shows that there are two saddles and 
the stable and unstable nodes, see Fig. 2. This picture 
remains unchanged at the variations of numerical values of 

F↓
, Dt

, and D
s
. 

 

 
 

FIG. 1. Radiation balance in the model with two 
temperatures. F↓D

s
 is the solar radiation absorbed by the 

surface, σ T
s

4
 (1 – D

t
) is the radiation coming from the 

surface and passed through the atmosphere, and  
σ T

a

 4
 (1 – D

t
) is the atmospheric self–radiation. 

 

 
 

FIG. 2. Phase portrait of system (3). 
 

Very often a linear parameterization of outgoing 
radiation is used, see, i.e., Ref. 4. In model (3) it is quite 
natural to consider for this the sum  

 

σT
s

 4D
t
 + σT

a

 4(1 – D
t
) = α + βT

s
 . (6) 

 

In this case a system of equations (3) are reduced to 



854   Atmos. Oceanic Opt.  /November  1991/  Vol. 4,  No. 11 O.B. Rodimova 
 

⎩
⎨
⎧

 

x⋅  = – a
1
x4 + βx + b

1
 = P

1

 y⋅  = a
1
x4 – 2βx + c

1
     

 (7) 

 

with 
 

a
1
 = σ(1 + D

t
) , b

1
 = a + b , c

1
 = –2α + c . 

 

System (7) is, strictly speaking, not a system of equations, 
because y is the function of x. A fragment of its phase 
portrait is depicted in Fig. 3. It can be seen that the 
isolated steady states are absent, and trajectories tend to go 
into infinity under any initial conditions. 
 

 
 

FIG. 3. Phase portrait of system (7). x
01

 and x
02

 are the 

roots of equation P
1
 = 0. 

 

It is possible, in principle, to parametrize separate 
constituents of the outgoing radiation. Thus, if a linear 
parameterization of the atmospheric long–wave radiation is 
adopted 

 

σT
a

 4(1 – D
t
) = εT

a
 , (8) 

 

we obtain  
 

⎩
⎨
⎧

 

x⋅  = εy – σx4 + b , 

y⋅  = ax4 – 2εy + c 
 (9) 

 

instead of Eqs. (3). A system of equations (9) has two steady 
states 
 

x
0
 = ± ((c + 2b)/(2σ – a))1/4 , 

y
0
 = ± (ab + σc)/ε(2σ – a) (10) 

 

and one of them located in the positive quadrant is a stable 
node and the other is a saddle. Similar picture is obtained, 
when the radiation going from the surface σT

s

 4D
t
, is 

parameterized by a linear function. 
Thus, the parameterizations changing the nonlinearity 

type can yield drastic, qualitative changes in the system 
behavior, e.g., the change of the number and character of 
steady states. The possibility of such qualitative changes 
must be taken into account when constructing the climatic 
models with different levels of parameterization. 
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